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Review

• Multiple-dimensionality of Document 
Space

• Automatic Methods for
– Clustering
– Creating Thesaurus Terms

• Midterm
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Documents in 3D Space

Assumption: Documents that are “close together” 
in space are similar in meaning.
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Vector Space Model

• Documents are represented as vectors in 
term space
– Terms are usually stems
– Documents represented by binary vectors of 

terms
• Queries represented the same as documents
• Query and Document weights are based on 

length and direction of their vector
• A vector distance measure between the 

query and documents is used to rank 
retrieved documents
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Documents in Vector Space
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Vector Space Documents
and Queries

docs t1 t2 t3 RSV=Q.Di
D1 1 0 1 4
D2 1 0 0 1
D3 0 1 1 5
D4 1 0 0 1
D5 1 1 1 6
D6 1 1 0 3
D7 0 1 0 2
D8 0 1 0 2
D9 0 0 1 3

D10 0 1 1 5
D11 1 0 1 3
Q 1 2 3
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Similarity Measures
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Simple matching (coordination level match)

Dice’s Coefficient

Jaccard’s Coefficient

Cosine Coefficient

Overlap Coefficient
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Text Clustering

Term 1

Term 
2

Clustering is
“The art of finding groups in data.”  
-- Kaufmann and Rousseeu
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Agglomerative Clustering

A B C D E F G H I
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Agglomerative Clustering

A B C D E F G H I
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Agglomerative
Clustering

A B C D E F G H I
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Automatic Class Assignment

Doc
Doc

Doc
Doc

Doc
Doc

Doc

Search
Engine

1. Create pseudo-documents representing
    intellectually derived classes.
2. Search using document contents
3. Obtain ranked list
4. Assign document to N categories
    ranked over threshold. OR assign
    to top-ranked category

Automatic Class Assignment: Polythetic, Exclusive or Overlapping,  usually ordered
clusters are order-independent, usually based on an intellectually derived scheme
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Today

• Document Ranking
– term weights
– similarity measures

• vector space model
• probabilistic models
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Finding Out About

• Three phases:
– Asking of a question
– Construction of an answer
– Assessment of the answer

• Part of an iterative process
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Ranking Algorithms

• Assign weights to the terms in the query.
• Assign weights to the terms in the documents.
• Compare the weighted query terms to the 

weighted document terms.
• Rank order the results.
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Structure of an IR System
Search
Line Interest profiles

& Queries
Documents 

& data

Rules of the game =
Rules for subject indexing +

Thesaurus (which consists of

Lead-In
Vocabulary

and
Indexing

Language 

Storage
Line

Potentially 
Relevant

Documents

Comparison/
Matching

Store1: Profiles/
Search requests

Store2: Document
representations

Indexing 
(Descriptive and 

Subject)

Formulating query in 
terms of 

descriptors

Storage of 
profiles

Storage of 
Documents

Information Storage and Retrieval System

Adapted from Soergel,  p. 19
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Vector Representation
 (revisited; see Salton article in Science)

• Documents and Queries are represented as vectors.
• Position 1 corresponds to term 1, position 2 to 

term 2, position t to term t
• The weight of the term is stored in each position
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Assigning Weights to Terms

• Binary weights

• Raw term frequency

• tf x idf

• Automatically-derived thesaurus terms
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Assigning Weights to Terms

• Binary Weights
• Raw term frequency
• tf x idf

– Recall the Zipf distribution
– Want to weight terms highly if they are

• frequent in relevant documents … BUT
• infrequent in the collection as a whole

• Automatically derived thesaurus terms
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Binary Weights

• Only the presence (1) or absence (0) of a 
term is included in the vector

docs t1 t2 t3
D1 1 0 1
D2 1 0 0
D3 0 1 1
D4 1 0 0
D5 1 1 1
D6 1 1 0
D7 0 1 0
D8 0 1 0
D9 0 0 1

D10 0 1 1
D11 1 0 1
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Raw Term Weights

• The frequency of occurrence for the term in 
each document is included in the vector

docs t1 t2 t3
D1 2 0 3
D2 1 0 0
D3 0 4 7
D4 3 0 0
D5 1 6 3
D6 3 5 0
D7 0 8 0
D8 0 10 0
D9 0 0 1

D10 0 3 5
D11 4 0 1
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Assigning Weights
• tf x idf measure:

– term frequency (tf)
– inverse document frequency (idf) -- a way to 

deal with the problems of the Zipf distribution

• Goal: assign a tf * idf weight to each term 
in each document
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tf x idf
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Inverse Document Frequency

• IDF provides high values for rare words and 
low values for common words
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tf x idf normalization
• Normalize the term weights (so longer documents 

are not unfairly given more weight)
– normalize usually means force all values to fall within a certain 

range, usually between 0 and 1, inclusive.
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Vector space similarity
(use the weights to compare the documents)
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Vector Space Similarity Measure
combine tf x idf into a similarity measure
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To Think About

• How does this ranking algorithm behave?
– Make a set of hypothetical documents 

consisting of terms and their weights
– Create some hypothetical queries
– How are the documents ranked, depending on 

the weights of their terms and the queries’ 
terms?
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Computing Similarity Scores
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Computing a similarity score
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Other Major Ranking Schemes

• Probabilistic Ranking
– Attempts to be more theoretically sound than 

the vector space (v.s.) model
• try to predict the probability of a document’s being 

relevant, given the query

• there are many many variations
• usually more complicated to compute than v.s.
• usually many approximations are required

– Works about the same (sometimes better) than 
vector space approaches
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Other Major Ranking Schemes

• Staged Logistic Regression
– A variation on probabilistic ranking
– Used successfully here at Berkeley in the 

Cheshire II system
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Probabilistic Models

• Rigorous formal model attempts to predict 
the probability that a given document will 
be relevant to a given query

• Ranks retrieved documents according to 
this probability of relevance (Probability 
Ranking Principle)

• Rely on accurate estimates of probabilities
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Probabilistic Models: Some 
Notation

• D = All present and future documents

• Q = All present and future queries

• (Di,Qj) = A document query pair

• x = class of similar documents, 

• y = class of similar queries,  

• Relevance is a relation:

}Q submittinguser  by therelevant  judged         

 isDdocument  ,Q ,D  | )Q,{(D  R

j

 ijiji QD ∈∈=

Dx ⊆
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Probabilistic Models

• Model 1 -- Probabilistic Indexing,  
P(R|y,Di)

• Model 2 -- Probabilistic Querying, 
P(R|Qj,x)

• Model 3 -- Merged Model, P(R| Qj, Di)

• Model 0 -- P(R|y,x)

• Probabilities are estimated based on prior 
usage or relevance estimation
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Probabilistic Models
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Logistic Regression

• Based on work by William Cooper, Fred 
Gey and Daniel Dabney.

• Builds a regression model for relevance 
prediction based on a set of training data

• Uses less restrictive independence 
assumptions than Model 2
– Linked Dependence
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Probabilistic Models: Logistic 
Regression

• Estimates for relevance based on log-linear 
model with various statistical measures of 
document content as independent variables.
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Log odds of relevance is a linear function of attributes:

Term contributions summed: 

Probability of Relevance is inverse of log odds:
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Logistic Regression
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Probabilistic Models: Logistic 
Regression attributes
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Probabilistic Models: Logistic 
Regression

∑
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Probability of relevance is based on
Logistic regression from a sample set of documents
to determine values of the coefficients.
At retrieval the probability estimate is obtained by:

For the 6 X attribute measures shown previously 
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Simplified Logistic Regression
• Pick a set of X feature types

• sum of frequencies of all terms in query                  x1 
• sum of frequencies of all query terms in document   x2

• query length                                                         x3

• document length                                                   x4
• sum of idf’s for all terms in query                            x5

• Determine weights, c, to indicate how important each 
feature type is (use training examples)

• To assign a score to the document:
– add up the feature weight times the term weight for each feature 

and each term in the query
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Probabilistic Models

• Strong theoretical 
basis

• In principle should 
supply the best 
predictions of 
relevance given 
available information

• Can be implemented 
similarly to Vector

• Relevance information 
is required -- or is 
“guestimated”

• Important indicators of 
relevance may not be 
term -- though terms 
only are usually used

• Optimally requires 
on-going collection of 
relevance information

Advantages Disadvantages
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Vector and Probabilistic Models

• Support “natural language” queries
• Treat documents and queries the same
• Support relevance feedback searching
• Support ranked retrieval
• Differ primarily in theoretical basis and in 

how the ranking is calculated
– Vector assumes relevance 
– Probabilistic relies on relevance judgments or 

estimates 
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