Term Weighting and Ranking Algorithms

Ray Larson & Marti Hearst University of California, Berkeley School of Information Management and Systems

SIMS 202: Information Organization and Retrieval: Lecture 17

10/15/98

Review

- Multiple-dimensionality of Document Space
- Automatic Methods for
 - Clustering
 - Creating Thesaurus Terms
- Midterm

10/15/98

Documents in 3D Space

Assumption: Documents that are "close together" in space are similar in meaning.

10/15/98 Information Organization

Vector Space Model

- Documents are represented as vectors in term space
 - Terms are usually stems
 - Documents represented by binary vectors of terms
- Queries represented the same as documents
- Query and Document weights are based on length and direction of their vector
- A vector distance measure between the query and documents is used to rank retrieved documents

10/15/98 Information Organization

Documents in Vector Space

10/15/98

Vector Space Documents and Queries

docs	<i>t1</i>	<i>t2</i>	t3	RSV=Q.Di
D1	1	0	1	4
D2	1	0	0	1
D3	0	1	1	5
D4	1	0	0	1
D5	1	1	1	6
D6	1	1	0	3
D7	0	1	0	2
D8	0	1	0	2
D9	0	0	1	3
D10	0	1	1	5
D11	1	0	1	3
Q	1	2	3	
	<i>q1</i>	<i>q2</i>	<i>q3</i>	

10/15/98

Similarity Measures

Simple matching (coordination level match)

Dice's Coefficient

Jaccard's Coefficient

Cosine Coefficient

Overlap Coefficient

10/15/98

 $\min(|Q|)$

 $|Q \cap D|$

O|+|D|

Text Clustering

Clustering is

"The art of finding groups in data."

-- Kaufmann and Rousseeu

Agglomerative Clustering

10/15/98

10/15/98

10/15/98

Automatic Class Assignment

Automatic Class Assignment: Polythetic, Exclusive or Overlapping, usually ordered clusters are order-independent, <u>usually</u> based on an intellectually derived scheme

10/15/98

Today

- Document Ranking
 - term weights
 - similarity measures
 - vector space model
 - probabilistic models

10/15/98

Finding Out About

- Three phases:
 - Asking of a question
 - Construction of an answer
 - Assessment of the answer
- Part of an iterative process

10/15/98

Ranking Algorithms

- Assign weights to the terms in the query.
- Assign weights to the terms in the documents.
- Compare the weighted query terms to the weighted document terms.
- Rank order the results.

10/15/98

Structure of an IR System

Vector Representation

(revisited; see Salton article in *Science*)

- Documents and Queries are represented as vectors.
- Position 1 corresponds to term 1, position 2 to term 2, position t to term t
- The weight of the term is stored in each position

$$D_{i} = w_{d_{i1}}, w_{d_{i2}}, \dots, w_{d_{it}}$$
$$Q = w_{q1}, w_{q2}, \dots, w_{qt}$$
$$w = 0 \text{ if a term is absent}$$

10/15/98 Information Organization

Assigning Weights to Terms

- Binary weights
- Raw term frequency
- tf x idf

10/15/98

• Automatically-derived thesaurus terms

Assigning Weights to Terms

- Binary Weights
- Raw term frequency
- tf x idf
 - Recall the Zipf distribution
 - Want to weight terms highly if they are
 - frequent in relevant documents ... BUT
 - infrequent in the collection as a whole
- Automatically derived thesaurus terms

10/15/98

Binary Weights

• Only the presence (1) or absence (0) of a term is included in the vector

docs	<i>t1</i>	<i>t2</i>	t3
D1	1	0	1
D2	1	0	0
D3	0	1	1
D4	1	0	0
D5	1	1	1
D6	1	1	0
D7	0	1	0
D8	0	1	0
D9	0	0	1
D10	0	1	1
D11	1	0	1

10/15/98

Raw Term Weights

• The frequency of occurrence for the term in each document is included in the vector

docs	<i>t1</i>	<i>t2</i>	t3
D1	2	0	3
D2	1	0	0
D3	0	4	7
D4	3	0	0
D5	1	6	3
D6	3	5	0
D7	0	8	0
D8	0	10	0
D9	0	0	1
D10	0	3	5
D11	4	0	1

10/15/98

Assigning Weights

- tf x idf measure:
 - term frequency (tf)
 - inverse document frequency (idf) -- a way to deal with the problems of the Zipf distribution
- Goal: assign a tf * idf weight to each term in each document

10/15/98

$$tf x idf$$
$$w_{ik} = tf_{ik} * \log(N / n_k)$$

 $T_k = \text{term } k \text{ in document } D_i$ tf_{ik} = frequency of term T_k in document D_i idf_{k} = inverse document frequency of term T_k in C N =total number of documents in the collection C n_k = the number of documents in C that contain T_k $idf_k = \log\left(\frac{N}{n_k}\right)$

10/15/98

Inverse Document Frequency

• IDF provides high values for rare words and low values for common words

$$log\left(\begin{array}{c}10000\\10000\end{array}\right) = 0$$

$$log\left(\begin{array}{c}10000\\5000\end{array}\right) = 0.301$$

$$log\left(\begin{array}{c}10000\\20\end{array}\right) = 2.698$$

$$log\left(\begin{array}{c}10000\\1\end{array}\right) = 4$$
Information Organization

10/15/98

tf x idf normalization

- Normalize the term weights (so longer documents are not unfairly given more weight)
 - normalize usually means force all values to fall within a certain range, usually between 0 and 1, inclusive.

$$w_{ik} = \frac{tf_{ik} \log(N/n_k)}{\sum_{k=1}^{t} (tf_{ik})^2 [\log(N/n_k)]^2}$$

10/15/98

Vector space similarity (use the weights to compare the documents)

Now, the similarity of two documents is :

$$sim(D_i, D_j) = \sum_{k=1}^{t} w_{ik} * w_{jk}$$

10/15/98

This is also called the cosine, or normalized inner product. (Normalization was done when weighting the terms.)

Vector Space Similarity Measure combine tf x idf into a similarity measure $D_i = w_{d_{i1}}, w_{d_{i2}}, \dots, w_{d_{il}}$

 $Q = w_{q1}, w_{q2}, ..., w_{qt}$ w = 0 if a term is absent

if term weights normalized:

$$sim(Q, D_i) = \sum_{j=1}^{t} w_{qj} * w_{d_{ij}}$$

otherwise normalize in the similarity comparison :

$$sim(Q, D_{i}) = \sum_{j=1}^{t} w_{qj} * w_{d_{ij}}$$
$$\sum_{j=1}^{t} (w_{qj})^{2} * \sum_{j=1}^{t} (w_{d_{ij}})^{2}$$

10/15/98

To Think About

- How does this ranking algorithm behave?
 - Make a set of hypothetical documents consisting of terms and their weights
 - Create some hypothetical queries
 - How are the documents ranked, depending on the weights of their terms and the queries' terms?

10/15/98

Computing Similarity Scores

10/15/98

Computing a similarity score

Say we have query vector Q = (0.4, 0.8)Also, document $D_{2} = (0.2, 0.7)$ What does their similarity comparison yield? $sim(Q, D_2) = \frac{(0.4 * 0.2) + (0.8 * 0.7)}{[(0.4)^2 + (0.8)^2] * [(0.2)^2 + (0.7)^2]}$ = 0.64 = 0.98 = 0.98

Information Organization

10/15/98

Other Major Ranking Schemes

- Probabilistic Ranking
 - Attempts to be more theoretically sound than the vector space (v.s.) model
 - try to predict the probability of a document's being relevant, given the query
 - there are many many variations
 - usually more complicated to compute than v.s.
 - usually many approximations are required
 - Works about the same (sometimes better) than vector space approaches

10/15/98 Information Organization

Other Major Ranking Schemes

- Staged Logistic Regression
 - A variation on probabilistic ranking
 - Used successfully here at Berkeley in the Cheshire II system

10/15/98

Probabilistic Models

- Rigorous formal model attempts to predict the probability that a given document will be relevant to a given query
- Ranks retrieved documents according to this probability of relevance (Probability Ranking Principle)
- Rely on accurate estimates of probabilities

10/15/98

Probabilistic Models: Some Notation

- $\mathbf{D} = \text{All present and future documents}$
- $\mathbf{Q} = All \text{ present and future queries}$
- $(D_i, Q_j) = A$ document query pair
- $\mathbf{x} = \text{class of similar documents}, \ \mathbf{x} \subseteq \mathbf{D}$
- $\mathbf{y} = \text{class of similar queries}, \quad \mathbf{y} \subseteq \mathbf{Q}$
- Relevance is a relation: $R = \{(D_i, Q_j) | D_i \in \mathbf{D}, Q_j \in \mathbf{Q}, \text{document } D_i \text{ is } \}$

judged relevant by the user submitting Q_j 10/15/98 Information Organization

Probabilistic Models

- Model 1 -- Probabilistic Indexing, P(R|y,D_i)
- Model 2 -- Probabilistic Querying,
 P(R|Q_j,x)
- Model 3 -- Merged Model, $P(\mathbf{R}|\mathbf{Q}_j, \mathbf{D}_i)$
- Model 0 -- $P(\mathbf{R}|\mathbf{y},\mathbf{x})$
- Probabilities are estimated based on prior usage or relevance estimation
 10/15/98 Information Organization

Probabilistic Models

10/15/98

Logistic Regression

- Based on work by William Cooper, Fred Gey and Daniel Dabney.
- Builds a regression model for relevance prediction based on a set of training data
- Uses less restrictive independence assumptions than Model 2
 - Linked Dependence

10/15/98

Probabilistic Models: Logistic Regression

• Estimates for relevance based on log-linear model with various statistical measures of document content as independent variables.

Log odds of relevance is a linear function of attributes: $\log O(R|q_i, d_j, t_k) = c_0 + c_1 v_1 + c_2 v_2 + \dots + c_n v_n$ Term contributions summed: $\log O(R|q_i, d_j) = \sum_{k=1}^{m} [\log O(R|q_i, d_j, t_k) - \log O(R)]$ Probability of Relevance is inverse of log odds: $P(R|q_i, d_j) = \frac{1}{1 + e^{-\log(O(R|q_i, d_j))}}$

10/15/98

Logistic Regression

Probabilistic Models: Logistic $X_{1} = \prod_{M}^{M} \sum_{j=1}^{M} \log QAF_{t_{j}}$ Average Absolute Query Frequency $X_2 = QL$ Query Length $X_3 = \frac{1}{M} \sum_{i=1}^{M} \log DAF_{t_i}$ Average Absolute Document Frequency $X_A = DL$ Document Length $X_5 = \frac{1}{M} \sum_{i=1}^{M} \log IDF_{t_i}$ Average Inverse Document Frequency IDF =Inverse Document Frequency n_t Number of Terms in common between $X_6 = \log M$ query and document -- logged

10/15/98

Probabilistic Models: Logistic Regression

Probability of relevance is based on Logistic regression from a sample set of documents to determine values of the coefficients.

At retrieval the probability estimate is obtained by:

$$P(R | Q, D) = c_0 + \sum_{i=1}^{6} c_i X_i$$

For the 6 X attribute measures shown previously

10/15/98

Simplified Logistic Regression

- Pick a set of X feature types
 - sum of frequencies of all terms in query x1
 - sum of frequencies of all query terms in document x2
 - query length x3
 - document length x4
 - sum of idf's for all terms in query x5
- Determine weights, c, to indicate how important each feature type is (use training examples)
- To assign a score to the document:
 - add up the feature weight times the term weight for each feature and each term in the query

$$score(D,Q) \approx \sum_{i=1}^{5} c_i x_i$$

10/15/98

Probabilistic Models

<u>Advantages</u>

- Strong theoretical basis
- In principle should supply the best predictions of relevance given available information
- Can be implemented similarly to Vector

Disadvantages

- Relevance information is required -- or is "guestimated"
- Important indicators of relevance may not be term -- though terms only are usually used
- Optimally requires on-going collection of relevance information

10/15/98

Vector and Probabilistic Models

- Support "natural language" queries
- Treat documents and queries the same
- Support relevance feedback searching
- Support ranked retrieval
- Differ primarily in theoretical basis and in how the ranking is calculated
 - Vector assumes relevance

10/15/98

Probabilistic relies on relevance judgments or estimates