-
Panyr, J.: Automatische Klassifikation und Information Retrieval : Anwendung und Entwicklung komplexer Verfahren in Information-Retrieval-Systemen und ihre Evaluierung (1986)
0.02
0.018675499 = product of:
0.074701995 = sum of:
0.074701995 = weight(_text_:und in 32) [ClassicSimilarity], result of:
0.074701995 = score(doc=32,freq=8.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.58770305 = fieldWeight in 32, product of:
2.828427 = tf(freq=8.0), with freq of:
8.0 = termFreq=8.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.09375 = fieldNorm(doc=32)
0.25 = coord(1/4)
- Series
- Sprache und Information; Bd.12
-
Bock, H.-H.: Automatische Klassifikation : theoretische und praktische Methoden zur Gruppierung und Strukturierung von Daten (Cluster-Analyse) (1974)
0.02
0.017607428 = product of:
0.07042971 = sum of:
0.07042971 = weight(_text_:und in 7693) [ClassicSimilarity], result of:
0.07042971 = score(doc=7693,freq=4.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.55409175 = fieldWeight in 7693, product of:
2.0 = tf(freq=4.0), with freq of:
4.0 = termFreq=4.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.125 = fieldNorm(doc=7693)
0.25 = coord(1/4)
-
Schek, M.: Automatische Klassifizierung und Visualisierung im Archiv der Süddeutschen Zeitung (2005)
0.02
0.016788844 = product of:
0.067155376 = sum of:
0.067155376 = weight(_text_:und in 4884) [ClassicSimilarity], result of:
0.067155376 = score(doc=4884,freq=76.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.5283316 = fieldWeight in 4884, product of:
8.717798 = tf(freq=76.0), with freq of:
76.0 = termFreq=76.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.02734375 = fieldNorm(doc=4884)
0.25 = coord(1/4)
- Abstract
- Die Süddeutsche Zeitung (SZ) verfügt seit ihrer Gründung 1945 über ein Pressearchiv, das die Texte der eigenen Redakteure und zahlreicher nationaler und internationaler Publikationen dokumentiert und auf Anfrage für Recherchezwecke bereitstellt. Die Einführung der EDV begann Anfang der 90er Jahre mit der digitalen Speicherung zunächst der SZ-Daten. Die technische Weiterentwicklung ab Mitte der 90er Jahre diente zwei Zielen: (1) dem vollständigen Wechsel von der Papierablage zur digitalen Speicherung und (2) dem Wandel von einer verlagsinternen Dokumentations- und Auskunftsstelle zu einem auch auf dem Markt vertretenen Informationsdienstleister. Um die dabei entstehenden Aufwände zu verteilen und gleichzeitig Synergieeffekte zwischen inhaltlich verwandten Archiven zu erschließen, gründeten der Süddeutsche Verlag und der Bayerische Rundfunk im Jahr 1998 die Dokumentations- und Informationszentrum (DIZ) München GmbH, in der die Pressearchive der beiden Gesellschafter und das Bildarchiv des Süddeutschen Verlags zusammengeführt wurden. Die gemeinsam entwickelte Pressedatenbank ermöglichte das standortübergreifende Lektorat, die browserbasierte Recherche für Redakteure und externe Kunden im Intraund Internet und die kundenspezifischen Content Feeds für Verlage, Rundfunkanstalten und Portale. Die DIZPressedatenbank enthält zur Zeit 6,9 Millionen Artikel, die jeweils als HTML oder PDF abrufbar sind. Täglich kommen ca. 3.500 Artikel hinzu, von denen ca. 1.000 lektoriert werden. Das Lektorat erfolgt im DIZ nicht durch die Vergabe von Schlagwörtern am Dokument, sondern durch die Verlinkung der Artikel mit "virtuellen Mappen", den Dossiers. Diese stellen die elektronische Repräsentation einer Papiermappe dar und sind das zentrale Erschließungsobjekt. Im Gegensatz zu statischen Klassifikationssystemen ist die Dossierstruktur dynamisch und aufkommensabhängig, d.h. neue Dossiers werden hauptsächlich anhand der aktuellen Berichterstattung erstellt. Insgesamt enthält die DIZ-Pressedatenbank ca. 90.000 Dossiers, davon sind 68.000 Sachthemen (Topics), Personen und Institutionen. Die Dossiers sind untereinander zum "DIZ-Wissensnetz" verlinkt.
DIZ definiert das Wissensnetz als Alleinstellungsmerkmal und wendet beträchtliche personelle Ressourcen für die Aktualisierung und Oualitätssicherung der Dossiers auf. Nach der Umstellung auf den komplett digitalisierten Workflow im April 2001 identifizierte DIZ vier Ansatzpunkte, wie die Aufwände auf der Inputseite (Lektorat) zu optimieren sind und gleichzeitig auf der Outputseite (Recherche) das Wissensnetz besser zu vermarkten ist: 1. (Teil-)Automatische Klassifizierung von Pressetexten (Vorschlagwesen) 2. Visualisierung des Wissensnetzes (Topic Mapping) 3. (Voll-)Automatische Klassifizierung und Optimierung des Wissensnetzes 4. Neue Retrievalmöglichkeiten (Clustering, Konzeptsuche) Die Projekte 1 und 2 "Automatische Klassifizierung und Visualisierung" starteten zuerst und wurden beschleunigt durch zwei Entwicklungen: - Der Bayerische Rundfunk (BR), ursprünglich Mitbegründer und 50%-Gesellschafter der DIZ München GmbH, entschloss sich aus strategischen Gründen, zum Ende 2003 aus der Kooperation auszusteigen. - Die Medienkrise, hervorgerufen durch den massiven Rückgang der Anzeigenerlöse, erforderte auch im Süddeutschen Verlag massive Einsparungen und die Suche nach neuen Erlösquellen. Beides führte dazu, dass die Kapazitäten im Bereich Pressedokumentation von ursprünglich rund 20 (nur SZ, ohne BR-Anteil) auf rund 13 zum 1. Januar 2004 sanken und gleichzeitig die Aufwände für die Pflege des Wissensnetzes unter verstärkten Rechtfertigungsdruck gerieten. Für die Projekte 1 und 2 ergaben sich daraus drei quantitative und qualitative Ziele: - Produktivitätssteigerung im Lektorat - Konsistenzverbesserung im Lektorat - Bessere Vermarktung und intensivere Nutzung der Dossiers in der Recherche Alle drei genannten Ziele konnten erreicht werden, wobei insbesondere die Produktivität im Lektorat gestiegen ist. Die Projekte 1 und 2 "Automatische Klassifizierung und Visualisierung" sind seit Anfang 2004 erfolgreich abgeschlossen. Die Folgeprojekte 3 und 4 laufen seit Mitte 2004 und sollen bis Mitte 2005 abgeschlossen sein. Im folgenden wird in Abschnitt 2 die Produktauswahl und Arbeitsweise der Automatischen Klassifizierung beschrieben. Abschnitt 3 schildert den Einsatz der Wissensnetz-Visualisierung in Lektorat und Recherche. Abschnitt 4 fasst die Ergebnisse der Projekte 1 und 2 zusammen und gibt einen Ausblick auf die Ziele der Projekte 3 und 4.
-
Panyr, J.: Automatische Indexierung und Klassifikation (1983)
0.02
0.01524848 = product of:
0.06099392 = sum of:
0.06099392 = weight(_text_:und in 7692) [ClassicSimilarity], result of:
0.06099392 = score(doc=7692,freq=12.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.47985753 = fieldWeight in 7692, product of:
3.4641016 = tf(freq=12.0), with freq of:
12.0 = termFreq=12.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.0625 = fieldNorm(doc=7692)
0.25 = coord(1/4)
- Abstract
- Im Beitrag wird zunächst eine terminologische Klärung und Gliederung für drei Indexierungsmethoden und weitere Begriffe, die Konsistenzprobleme bei intellektueller Indexierung betreffen, unternommen. Zur automatichen Indexierung werden Extraktionsmethoden erläutert und zur Automatischen Klassifikation (Clustering) und Indexierung zwei Anwendungen vorgestellt. Eine enge Kooperation zwischen den Befürwortern der intellektuellen und den Entwicklern von automatischen Indexierungsverfahren wird empfohlen
-
Bock, H.-H.: Datenanalyse zur Strukturierung und Ordnung von Information (1989)
0.01
0.014411461 = product of:
0.057645842 = sum of:
0.057645842 = weight(_text_:und in 141) [ClassicSimilarity], result of:
0.057645842 = score(doc=141,freq=14.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.4535172 = fieldWeight in 141, product of:
3.7416575 = tf(freq=14.0), with freq of:
14.0 = termFreq=14.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.0546875 = fieldNorm(doc=141)
0.25 = coord(1/4)
- Abstract
- Aufgabe der Datenanalyse ist es, Daten zu ordnen, übersichtlich darzustellen, verborgene und natürlich Strukturen zu entdecken, die diesbezüglich wesentlichen Eigenschaften herauszukristallisieren und zweckmäßige Modelle zur Beschreibung von Daten aufzustellen. Es wird ein Einblick in die Methoden und Prinzipien der Datenanalyse vermittelt. Anhand typischer Beispiele wird gezeigt, welche Daten analysiert, welche Strukturen betrachtet, welche Darstellungs- bzw. Ordnungsmethoden verwendet, welche Zielsetzungen verfolgt und welche Bewertungskriterien dabei angewendet werden können. Diskutiert wird auch die angemessene Verwendung der unterschiedlichen Methoden, wobei auf die gefahr und Art von Fehlinterpretationen hingewiesen wird
- Source
- Klassifikation und Ordnung. Tagungsband 12. Jahrestagung der Gesellschaft für Klassifikation, Darmstadt 17.-19.3.1988. Hrsg.: R. Wille
-
Walther, R.: Möglichkeiten und Grenzen automatischer Klassifikationen von Web-Dokumenten (2001)
0.01
0.014411461 = product of:
0.057645842 = sum of:
0.057645842 = weight(_text_:und in 1562) [ClassicSimilarity], result of:
0.057645842 = score(doc=1562,freq=14.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.4535172 = fieldWeight in 1562, product of:
3.7416575 = tf(freq=14.0), with freq of:
14.0 = termFreq=14.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.0546875 = fieldNorm(doc=1562)
0.25 = coord(1/4)
- Abstract
- Automatische Klassifikationen von Web- und andern Textdokumenten ermöglichen es, betriebsinterne und externe Informationen geordnet zugänglich zu machen. Die Forschung zur automatischen Klassifikation hat sich in den letzten Jahren intensiviert. Das Resultat sind verschiedenen Methoden, die heute in der Praxis einzeln oder kombiniert für die Klassifikation im Einsatz sind. In der vorliegenden Lizenziatsarbeit werden neben allgemeinen Grundsätzen einige Methoden zur automatischen Klassifikation genauer betrachtet und ihre Möglichkeiten und Grenzen erörtert. Daneben erfolgt die Präsentation der Resultate aus einer Umfrage bei Anbieterrfirmen von Softwarelösungen zur automatische Klassifikation von Text-Dokumenten. Die Ausführungen dienen der myax internet AG als Basis, ein eigenes Klassifikations-Produkt zu entwickeln
- Footnote
- Lizenziatsarbeit an der Rechts- und Wirtschaftswissenschaftlichen Fakultät der Universität Bern, Institut für Wirtschaftsinformatik (Prof. G. Knolmayer)
- Imprint
- Bern : Rechts- und Wirtschaftswissenschaftlichen Fakultät
-
Sommer, M.: Automatische Generierung von DDC-Notationen für Hochschulveröffentlichungen (2012)
0.01
0.013205572 = product of:
0.052822288 = sum of:
0.052822288 = weight(_text_:und in 587) [ClassicSimilarity], result of:
0.052822288 = score(doc=587,freq=16.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.41556883 = fieldWeight in 587, product of:
4.0 = tf(freq=16.0), with freq of:
16.0 = termFreq=16.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.046875 = fieldNorm(doc=587)
0.25 = coord(1/4)
- Abstract
- Das Thema dieser Bachelorarbeit ist die automatische Generierung von Notationen der Dewey-Dezimalklassifikation für Metadaten. Die Metadaten sind im Dublin-Core-Format und stammen vom Server für wissenschaftliche Schriften der Hochschule Hannover. Zu Beginn erfolgt eine allgemeine Einführung über die Methoden und Hauptanwendungsbereiche des automatischen Klassifizierens. Danach werden die Dewey-Dezimalklassifikation und der Prozess der Metadatengewinnung beschrieben. Der theoretische Teil endet mit der Beschreibung von zwei Projekten. In dem ersten Projekt wurde ebenfalls versucht Metadaten mit Notationen der Dewey-Dezimalklassifikation anzureichern. Das Ergebnis des zweiten Projekts ist eine Konkordanz zwischen der Schlagwortnormdatei und der Dewey-Dezimalklassifikation. Diese Konkordanz wurde im praktischen Teil dieser Arbeit dazu benutzt um automatisch Notationen der Dewey-Dezimalklassifikation zu vergeben.
- Content
- Vgl. unter: http://opus.bsz-bw.de/fhhv/volltexte/2012/397/pdf/Bachelorarbeit_final_Korrektur01.pdf. Bachelorarbeit, Hochschule Hannover, Fakultät III - Medien, Information und Design, Abteilung Information und Kommunikation, Studiengang Informationsmanagement
- Imprint
- Hannover : Hochschule Hannover, Fakultät III - Medien, Information und Design, Abteilung Information und Kommunikation
-
Kasprzik, A.: Automatisierte und semiautomatisierte Klassifizierung : eine Analyse aktueller Projekte (2014)
0.01
0.013205572 = product of:
0.052822288 = sum of:
0.052822288 = weight(_text_:und in 2470) [ClassicSimilarity], result of:
0.052822288 = score(doc=2470,freq=16.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.41556883 = fieldWeight in 2470, product of:
4.0 = tf(freq=16.0), with freq of:
16.0 = termFreq=16.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.046875 = fieldNorm(doc=2470)
0.25 = coord(1/4)
- Abstract
- Das sprunghafte Anwachsen der Menge digital verfügbarer Dokumente gepaart mit dem Zeit- und Personalmangel an wissenschaftlichen Bibliotheken legt den Einsatz von halb- oder vollautomatischen Verfahren für die verbale und klassifikatorische Inhaltserschließung nahe. Nach einer kurzen allgemeinen Einführung in die gängige Methodik beleuchtet dieser Artikel eine Reihe von Projekten zur automatisierten Klassifizierung aus dem Zeitraum 2007-2012 und aus dem deutschsprachigen Raum. Ein Großteil der vorgestellten Projekte verwendet Methoden des Maschinellen Lernens aus der Künstlichen Intelligenz, arbeitet meist mit angepassten Versionen einer kommerziellen Software und bezieht sich in der Regel auf die Dewey Decimal Classification (DDC). Als Datengrundlage dienen Metadatensätze, Abstracs, Inhaltsverzeichnisse und Volltexte in diversen Datenformaten. Die abschließende Analyse enthält eine Anordnung der Projekte nach einer Reihe von verschiedenen Kriterien und eine Zusammenfassung der aktuellen Lage und der größten Herausfordungen für automatisierte Klassifizierungsverfahren.
-
Reiner, U.: VZG-Projekt Colibri : Bewertung von automatisch DDC-klassifizierten Titeldatensätzen der Deutschen Nationalbibliothek (DNB) (2009)
0.01
0.012904088 = product of:
0.051616352 = sum of:
0.051616352 = weight(_text_:und in 2675) [ClassicSimilarity], result of:
0.051616352 = score(doc=2675,freq=22.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.40608138 = fieldWeight in 2675, product of:
4.690416 = tf(freq=22.0), with freq of:
22.0 = termFreq=22.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.0390625 = fieldNorm(doc=2675)
0.25 = coord(1/4)
- Abstract
- Das VZG-Projekt Colibri/DDC beschäftigt sich seit 2003 mit automatischen Verfahren zur Dewey-Dezimalklassifikation (Dewey Decimal Classification, kurz DDC). Ziel des Projektes ist eine einheitliche DDC-Erschließung von bibliografischen Titeldatensätzen und eine Unterstützung der DDC-Expert(inn)en und DDC-Laien, z. B. bei der Analyse und Synthese von DDC-Notationen und deren Qualitätskontrolle und der DDC-basierten Suche. Der vorliegende Bericht konzentriert sich auf die erste größere automatische DDC-Klassifizierung und erste automatische und intellektuelle Bewertung mit der Klassifizierungskomponente vc_dcl1. Grundlage hierfür waren die von der Deutschen Nationabibliothek (DNB) im November 2007 zur Verfügung gestellten 25.653 Titeldatensätze (12 Wochen-/Monatslieferungen) der Deutschen Nationalbibliografie der Reihen A, B und H. Nach Erläuterung der automatischen DDC-Klassifizierung und automatischen Bewertung in Kapitel 2 wird in Kapitel 3 auf den DNB-Bericht "Colibri_Auswertung_DDC_Endbericht_Sommer_2008" eingegangen. Es werden Sachverhalte geklärt und Fragen gestellt, deren Antworten die Weichen für den Verlauf der weiteren Klassifizierungstests stellen werden. Über das Kapitel 3 hinaus führende weitergehende Betrachtungen und Gedanken zur Fortführung der automatischen DDC-Klassifizierung werden in Kapitel 4 angestellt. Der Bericht dient dem vertieften Verständnis für die automatischen Verfahren.
-
Greiner, G.: Intellektuelles und automatisches Klassifizieren (1981)
0.01
0.012450332 = product of:
0.049801327 = sum of:
0.049801327 = weight(_text_:und in 1103) [ClassicSimilarity], result of:
0.049801327 = score(doc=1103,freq=2.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.39180204 = fieldWeight in 1103, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.125 = fieldNorm(doc=1103)
0.25 = coord(1/4)
-
Panyr, J.: STEINADLER: ein Verfahren zur automatischen Deskribierung und zur automatischen thematischen Klassifikation (1978)
0.01
0.012450332 = product of:
0.049801327 = sum of:
0.049801327 = weight(_text_:und in 5169) [ClassicSimilarity], result of:
0.049801327 = score(doc=5169,freq=2.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.39180204 = fieldWeight in 5169, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.125 = fieldNorm(doc=5169)
0.25 = coord(1/4)
-
Pfister, J.: Clustering von Patent-Dokumenten am Beispiel der Datenbanken des Fachinformationszentrums Karlsruhe (2006)
0.01
0.012450332 = product of:
0.049801327 = sum of:
0.049801327 = weight(_text_:und in 5976) [ClassicSimilarity], result of:
0.049801327 = score(doc=5976,freq=8.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.39180204 = fieldWeight in 5976, product of:
2.828427 = tf(freq=8.0), with freq of:
8.0 = termFreq=8.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.0625 = fieldNorm(doc=5976)
0.25 = coord(1/4)
- Abstract
- In diesem Artikel, der im Anwendungsbereich der Patentrecherche und Patentinformation angesiedelt ist, wird das automatische Gruppieren von Patentdokumenten - das so genannte Clustering - als ein Werkzeug zur Aufbereitung der Ergebnismenge einer Datenbankanfrage untersucht. Der Schwerpunkt liegt dabei auf der Evaluierung von drei Clustering-Verfahren mittels Nutzerbewertungen.
- Source
- Effektive Information Retrieval Verfahren in Theorie und Praxis: ausgewählte und erweiterte Beiträge des Vierten Hildesheimer Evaluierungs- und Retrievalworkshop (HIER 2005), Hildesheim, 20.7.2005. Hrsg.: T. Mandl u. C. Womser-Hacker
-
Jersek, T.: Automatische DDC-Klassifizierung mit Lingo : Vorgehensweise und Ergebnisse (2012)
0.01
0.012450332 = product of:
0.049801327 = sum of:
0.049801327 = weight(_text_:und in 122) [ClassicSimilarity], result of:
0.049801327 = score(doc=122,freq=8.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.39180204 = fieldWeight in 122, product of:
2.828427 = tf(freq=8.0), with freq of:
8.0 = termFreq=8.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.0625 = fieldNorm(doc=122)
0.25 = coord(1/4)
- Abstract
- Die Arbeit befasst sich mit der Realisierung und der Durchführung einer automatischen DDCKlassifizierung durch das Indexierungssystem Lingo. Dies geschieht durch die Einbeziehung von Relationen des DFG-Projektes CrissCross, anhand derer Lingo bibliographische Titeldatensätze automatisch klassifiziert. Der dabei verwendete Ansatz wird mit dem üblichen methodischen Vorgehen bei automatischen Klassifizierungssystemen verglichen. Das Klassifizierungsverfahren wird daraufhin anhand einer Testkollektion von bibliographischen Titeldatensätzen der Deutschen Nationalbibliothek (DNB) getestet. Es folgt eine Diskussion der Ergebnisse und eine Bewertung des Klassifizierungssystems.
- Content
- Diplomarbeit, Studiengang Bibliothekswesen, Fakultät für Informations- und Kommunikationswissenschaften, Fachhochschule Köln.
-
Krüger, C.: Evaluation des WWW-Suchdienstes GERHARD unter besonderer Beachtung automatischer Indexierung (1999)
0.01
0.012303565 = product of:
0.04921426 = sum of:
0.04921426 = weight(_text_:und in 1777) [ClassicSimilarity], result of:
0.04921426 = score(doc=1777,freq=20.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.3871834 = fieldWeight in 1777, product of:
4.472136 = tf(freq=20.0), with freq of:
20.0 = termFreq=20.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.0390625 = fieldNorm(doc=1777)
0.25 = coord(1/4)
- Abstract
- Die vorliegende Arbeit beinhaltet eine Beschreibung und Evaluation des WWW - Suchdienstes GERHARD (German Harvest Automated Retrieval and Directory). GERHARD ist ein Such- und Navigationssystem für das deutsche World Wide Web, weiches ausschließlich wissenschaftlich relevante Dokumente sammelt, und diese auf der Basis computerlinguistischer und statistischer Methoden automatisch mit Hilfe eines bibliothekarischen Klassifikationssystems klassifiziert. Mit dem DFG - Projekt GERHARD ist der Versuch unternommen worden, mit einem auf einem automatischen Klassifizierungsverfahren basierenden World Wide Web - Dienst eine Alternative zu herkömmlichen Methoden der Interneterschließung zu entwickeln. GERHARD ist im deutschsprachigen Raum das einzige Verzeichnis von Internetressourcen, dessen Erstellung und Aktualisierung vollständig automatisch (also maschinell) erfolgt. GERHARD beschränkt sich dabei auf den Nachweis von Dokumenten auf wissenschaftlichen WWW - Servern. Die Grundidee dabei war, kostenintensive intellektuelle Erschließung und Klassifizierung von lnternetseiten durch computerlinguistische und statistische Methoden zu ersetzen, um auf diese Weise die nachgewiesenen Internetressourcen automatisch auf das Vokabular eines bibliothekarischen Klassifikationssystems abzubilden. GERHARD steht für German Harvest Automated Retrieval and Directory. Die WWW - Adresse (URL) von GERHARD lautet: http://www.gerhard.de. Im Rahmen der vorliegenden Diplomarbeit soll eine Beschreibung des Dienstes mit besonderem Schwerpunkt auf dem zugrundeliegenden Indexierungs- bzw. Klassifizierungssystem erfolgen und anschließend mit Hilfe eines kleinen Retrievaltests die Effektivität von GERHARD überprüft werden.
- Footnote
- Diplomarbeit im Fach Inhaltliche Erschließung, Studiengang Informationsmanagement der FH Stuttgart - Hochschule für Bibliotheks- und Informationswesen
- Imprint
- Stuttgart : FH - Hochschule für Bibliotheks- und Informationswesen
-
Automatische Klassifikation und Extraktion in Documentum (2005)
0.01
0.012303565 = product of:
0.04921426 = sum of:
0.04921426 = weight(_text_:und in 3974) [ClassicSimilarity], result of:
0.04921426 = score(doc=3974,freq=20.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.3871834 = fieldWeight in 3974, product of:
4.472136 = tf(freq=20.0), with freq of:
20.0 = termFreq=20.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.0390625 = fieldNorm(doc=3974)
0.25 = coord(1/4)
- Content
- "LCI Comprend ist ab sofort als integriertes Modul für EMCs Content Management System Documentum verfügbar. LCI (Learning Computers International GmbH) hat mit Unterstützung von neeb & partner diese Technologie zur Dokumentenautomation transparent in Documentum integriert. Dies ist die erste bekannte Lösung für automatische, lernende Klassifikation und Extraktion, die direkt auf dem Documentum Datenbestand arbeitet und ohne zusätzliche externe Steuerung auskommt. Die LCI Information Capture Services (ICS) dienen dazu, jegliche Art von Dokument zu klassifizieren und Information daraus zu extrahieren. Das Dokument kann strukturiert, halbstrukturiert oder unstrukturiert sein. Somit können beispielsweise gescannte Formulare genauso verarbeitet werden wie Rechnungen oder E-Mails. Die Extraktions- und Klassifikationsvorschriften und die zu lernenden Beispieldokumente werden einfach interaktiv zusammengestellt und als XML-Struktur gespeichert. Zur Laufzeit wird das Projekt angewendet, um unbekannte Dokumente aufgrund von Regeln und gelernten Beispielen automatisch zu indexieren. Dokumente können damit entweder innerhalb von Documentum oder während des Imports verarbeitet werden. Der neue Server erlaubt das Einlesen von Dateien aus dem Dateisystem oder direkt von POPS-Konten, die Analyse der Dokumente und die automatische Erzeugung von Indexwerten bei der Speicherung in einer Documentum Ablageumgebung. Diese Indexwerte, die durch inhaltsbasierte, auch mehrthematische Klassifikation oder durch Extraktion gewonnen wurden, werden als vordefinierte Attribute mit dem Documentum-Objekt abgelegt. Handelt es sich um ein gescanntes Dokument oder ein Fax, wird automatisch die integrierte Volltext-Texterkennung durchgeführt."
- Source
- Information - Wissenschaft und Praxis. 56(2005) H.5/6, S.276
-
Oberhauser, O.: Automatisches Klassifizieren : Entwicklungsstand - Methodik - Anwendungsbereiche (2005)
0.01
0.012148797 = product of:
0.048595186 = sum of:
0.048595186 = weight(_text_:und in 38) [ClassicSimilarity], result of:
0.048595186 = score(doc=38,freq=78.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.38231295 = fieldWeight in 38, product of:
8.83176 = tf(freq=78.0), with freq of:
78.0 = termFreq=78.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.01953125 = fieldNorm(doc=38)
0.25 = coord(1/4)
- Abstract
- Automatisches Klassifizieren von Textdokumenten bedeutet die maschinelle Zuordnung jeweils einer oder mehrerer Notationen eines vorgegebenen Klassifikationssystems zu natürlich-sprachlichen Texten mithilfe eines geeigneten Algorithmus. In der vorliegenden Arbeit wird in Form einer umfassenden Literaturstudie ein aktueller Kenntnisstand zu den Ein-satzmöglichkeiten des automatischen Klassifizierens für die sachliche Erschliessung von elektronischen Dokumenten, insbesondere von Web-Ressourcen, erarbeitet. Dies betrifft zum einen den methodischen Aspekt und zum anderen die in relevanten Projekten und Anwendungen gewonnenen Erfahrungen. In methodischer Hinsicht gelten heute statistische Verfahren, die auf dem maschinellen Lernen basieren und auf der Grundlage bereits klassifizierter Beispieldokumente ein Modell - einen "Klassifikator" - erstellen, das zur Klassifizierung neuer Dokumente verwendet werden kann, als "state-of-the-art". Die vier in den 1990er Jahren an den Universitäten Lund, Wolverhampton und Oldenburg sowie bei OCLC (Dublin, OH) durchgeführten "grossen" Projekte zum automatischen Klassifizieren von Web-Ressourcen, die in dieser Arbeit ausführlich analysiert werden, arbeiteten allerdings noch mit einfacheren bzw. älteren methodischen Ansätzen. Diese Projekte bedeuten insbesondere aufgrund ihrer Verwendung etablierter bibliothekarischer Klassifikationssysteme einen wichtigen Erfahrungsgewinn, selbst wenn sie bisher nicht zu permanenten und qualitativ zufriedenstellenden Diensten für die Erschliessung elektronischer Ressourcen geführt haben. Die Analyse der weiteren einschlägigen Anwendungen und Projekte lässt erkennen, dass derzeit in den Bereichen Patent- und Mediendokumentation die aktivsten Bestrebungen bestehen, Systeme für die automatische klassifikatorische Erschliessung elektronischer Dokumente im laufenden operativen Betrieb einzusetzen. Dabei dominieren jedoch halbautomatische Systeme, die menschliche Bearbeiter durch Klassifizierungsvorschläge unterstützen, da die gegenwärtig erreichbare Klassifizierungsgüte für eine Vollautomatisierung meist noch nicht ausreicht. Weitere interessante Anwendungen und Projekte finden sich im Bereich von Web-Portalen, Suchmaschinen und (kommerziellen) Informationsdiensten, während sich etwa im Bibliothekswesen kaum nennenswertes Interesse an einer automatischen Klassifizierung von Büchern bzw. bibliographischen Datensätzen registrieren lässt. Die Studie schliesst mit einer Diskussion der wichtigsten Projekte und Anwendungen sowie einiger im Zusammenhang mit dem automatischen Klassifizieren relevanter Fragestellungen und Themen.
- Footnote
- Rez. in: VÖB-Mitteilungen 58(2005) H.3, S.102-104 (R.F. Müller); ZfBB 53(2006) H.5, S.282-283 (L. Svensson): "Das Sammeln und Verzeichnen elektronischer Ressourcen gehört in wissenschaftlichen Bibliotheken längst zum Alltag. Parallel dazu kündigt sich ein Paradigmenwechsel bei den Findmitteln an: Um einen effizienten und benutzerorientierten Zugang zu den gemischten Kollektionen bieten zu können, experimentieren einige bibliothekarische Diensteanbieter wie z. B. das hbz (http://suchen.hbz-nrw.de/dreilaender/), die Bibliothek der North Carolina State University (www.lib.ncsu.edu/) und demnächst vascoda (www.vascoda.de/) und der Librarians-Internet Index (www.lii.org/) zunehmend mit Suchmaschinentechnologie. Dabei wird angestrebt, nicht nur einen vollinvertierten Suchindex anzubieten, sondern auch das Browsing durch eine hierarchisch geordnete Klassifikation. Von den Daten in den deutschen Verbunddatenbanken ist jedoch nur ein kleiner Teil schon klassifikatorisch erschlossen. Fremddaten aus dem angloamerikanischen Bereich sind oft mit LCC und/oder DDC erschlossen, wobei die Library of Congress sich bei der DDCErschließung auf Titel, die hauptsächlich für die Public Libraries interessant sind, konzentriert. Die Deutsche Nationalbibliothek wird ab 2007 Printmedien und Hochschulschriften flächendeckend mit DDC erschließen. Es ist aber schon offensichtlich, dass v. a. im Bereich der elektronischen Publikationen die anfallenden Dokumentenmengen mit immer knapperen Personalressourcen nicht intellektuell erschlossen werden können, sondern dass neue Verfahren entwickelt werden müssen. Hier kommt Oberhausers Buch gerade richtig. Seit Anfang der 1990er Jahre sind mehrere Projekte zum Thema automatisches Klassifizieren durchgeführt worden. Wer sich in diese Thematik einarbeiten wollte oder sich für die Ergebnisse der größeren Projekte interessierte, konnte bislang auf keine Überblicksdarstellung zurückgreifen, sondern war auf eine Vielzahl von Einzeluntersuchungen sowie die Projektdokumentationen angewiesen. Oberhausers Darstellung, die auf einer Fülle von publizierter und grauer Literatur fußt, schließt diese Lücke. Das selbst gesetzte Ziel, einen guten Überblick über den momentanen Kenntnisstand und die Ergebnisse der einschlägigen Projekte verständlich zu vermitteln, erfüllt der Autor mit Bravour. Dabei ist anzumerken, dass er ein bibliothekarisches Grundwissen und mindestens grundlegende Kenntnisse über informationswissenschaftliche Grundbegriffe und Fragestellungen voraussetzt, wobei hier für den Einsteiger einige Hinweise auf einführende Darstellungen wünschenswert gewesen wären.
Zum Inhalt Auf einen kurzen einleitenden Abschnitt folgt eine Einführung in die grundlegende Methodik des automatischen Klassifizierens. Oberhauser erklärt hier Begriffe wie Einfach- und Mehrfachklassifizierung, Klassen- und Dokumentzentrierung, und geht danach auf die hauptsächlichen Anwendungen der automatischen Klassifikation von Textdokumenten, maschinelle Lernverfahren und Techniken der Dimensionsreduktion bei der Indexierung ein. Zwei weitere Unterkapitel sind der Erstellung von Klassifikatoren und den Methoden für deren Auswertung gewidmet. Das Kapitel wird abgerundet von einer kurzen Auflistung einiger Softwareprodukte für automatisches Klassifizieren, die sowohl kommerzielle Software, als auch Projekte aus dem Open-Source-Bereich umfasst. Der Hauptteil des Buches ist den großen Projekten zur automatischen Erschließung von Webdokumenten gewidmet, die von OCLC (Scorpion) sowie an den Universitäten Lund (Nordic WAIS/WWW, DESIRE II), Wolverhampton (WWLib-TOS, WWLib-TNG, Old ACE, ACE) und Oldenburg (GERHARD, GERHARD II) durchgeführt worden sind. Der Autor beschreibt hier sehr detailliert - wobei der Detailliertheitsgrad unterschiedlich ist, je nachdem, was aus der Projektdokumentation geschlossen werden kann - die jeweilige Zielsetzung des Projektes, die verwendete Klassifikation, die methodische Vorgehensweise sowie die Evaluierungsmethoden und -ergebnisse. Sofern Querverweise zu anderen Projekten bestehen, werden auch diese besprochen. Der Verfasser geht hier sehr genau auf wichtige Aspekte wie Vokabularbildung, Textaufbereitung und Gewichtung ein, so dass der Leser eine gute Vorstellung von den Ansätzen und der möglichen Weiterentwicklung des Projektes bekommt. In einem weiteren Kapitel wird auf einige kleinere Projekte eingegangen, die dem für Bibliotheken besonders interessanten Thema des automatischen Klassifizierens von Büchern sowie den Bereichen Patentliteratur, Mediendokumentation und dem Einsatz bei Informationsdiensten gewidmet sind. Die Darstellung wird ergänzt von einem Literaturverzeichnis mit über 250 Titeln zu den konkreten Projekten sowie einem Abkürzungs- und einem Abbildungsverzeichnis. In der abschließenden Diskussion der beschriebenen Projekte wird einerseits auf die Bedeutung der einzelnen Projekte für den methodischen Fortschritt eingegangen, andererseits aber auch einiges an Kritik geäußert, v. a. bezüglich der mangelnden Auswertung der Projektergebnisse und des Fehlens an brauchbarer Dokumentation. So waren z. B. die Projektseiten des Projekts GERHARD (www.gerhard.de/) auf den Stand von 1998 eingefroren, zurzeit [11.07.06] sind sie überhaupt nicht mehr erreichbar. Mit einigem Erstaunen stellt Oberhauser auch fest, dass - abgesehen von der fast 15 Jahre alten Untersuchung von Larsen - »keine signifikanten Studien oder Anwendungen aus dem Bibliotheksbereich vorliegen« (S. 139). Wie der Autor aber selbst ergänzend ausführt, dürfte dies daran liegen, dass sich bibliografische Metadaten wegen des geringen Textumfangs sehr schlecht für automatische Klassifikation eignen, und dass - wie frühere Ergebnisse gezeigt haben - das übliche TF/IDF-Verfahren nicht für Katalogisate geeignet ist (ibd.).
Die am Anfang des Werkes gestellte Frage, ob »die Techniken des automatischen Klassifizierens heute bereits so weit [sind], dass damit grosse Mengen elektronischer Dokumente [-] zufrieden stellend erschlossen werden können? « (S. 13), beantwortet der Verfasser mit einem eindeutigen »nein«, was Salton und McGills Aussage von 1983, »daß einfache automatische Indexierungsverfahren schnell und kostengünstig arbeiten, und daß sie Recall- und Precisionwerte erreichen, die mindestens genauso gut sind wie bei der manuellen Indexierung mit kontrolliertem Vokabular « (Gerard Salton und Michael J. McGill: Information Retrieval. Hamburg u.a. 1987, S. 64 f.) kräftig relativiert. Über die Gründe, warum drei der großen Projekte nicht weiter verfolgt werden, will Oberhauser nicht spekulieren, nennt aber mangelnden Erfolg, Verlagerung der Arbeit in den beteiligten Institutionen sowie Finanzierungsprobleme als mögliche Ursachen. Das größte Entwicklungspotenzial beim automatischen Erschließen großer Dokumentenmengen sieht der Verfasser heute in den Bereichen der Patentund Mediendokumentation. Hier solle man im bibliothekarischen Bereich die Entwicklung genau verfolgen, da diese »sicherlich mittelfristig auf eine qualitativ zufrieden stellende Vollautomatisierung« abziele (S. 146). Oberhausers Darstellung ist ein rundum gelungenes Werk, das zum Handapparat eines jeden, der sich für automatische Erschließung interessiert, gehört."
-
Schek, M.: Automatische Klassifizierung in Erschließung und Recherche eines Pressearchivs (2006)
0.01
0.012054983 = product of:
0.04821993 = sum of:
0.04821993 = weight(_text_:und in 6043) [ClassicSimilarity], result of:
0.04821993 = score(doc=6043,freq=30.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.3793607 = fieldWeight in 6043, product of:
5.477226 = tf(freq=30.0), with freq of:
30.0 = termFreq=30.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.03125 = fieldNorm(doc=6043)
0.25 = coord(1/4)
- Abstract
- Die Süddeutsche Zeitung (SZ) verfügt seit ihrer Gründung 1945 über ein Pressearchiv, das die Texte der eigenen Redakteure und zahlreicher nationaler und internationaler Publikationen dokumentiert und für Recherchezwecke bereitstellt. Die DIZ-Pressedatenbank (www.medienport.de) ermöglicht die browserbasierte Recherche für Redakteure und externe Kunden im Intra- und Internet und die kundenspezifischen Content Feeds für Verlage, Rundfunkanstalten und Portale. Die DIZ-Pressedatenbank enthält z. Zt. 7,8 Millionen Artikel, die jeweils als HTML oder PDF abrufbar sind. Täglich kommen ca. 3.500 Artikel hinzu, von denen ca. 1.000 durch Dokumentare inhaltlich erschlossen werden. Die Informationserschließung erfolgt im DIZ nicht durch die Vergabe von Schlagwörtern am Dokument, sondern durch die Verlinkung der Artikel mit "virtuellen Mappen", den Dossiers. Insgesamt enthält die DIZ-Pressedatenbank ca. 90.000 Dossiers, die untereinander zum "DIZ-Wissensnetz" verlinkt sind. DIZ definiert das Wissensnetz als Alleinstellungsmerkmal und wendet beträchtliche personelle Ressourcen für die Aktualisierung und Qualitätssicherung der Dossiers auf. Im Zuge der Medienkrise mussten sich DIZ der Herausforderung stellen, bei sinkenden Lektoratskapazitäten die Qualität der Informationserschließung im Input zu erhalten. Auf der Outputseite gilt es, eine anspruchsvolle Zielgruppe - u.a. die Redakteure der Süddeutschen Zeitung - passgenau und zeitnah mit den Informationen zu versorgen, die sie für ihre tägliche Arbeit benötigt. Bezogen auf die Ausgangssituation in der Dokumentation der Süddeutschen Zeitung identifizierte DIZ drei Ansatzpunkte, wie die Aufwände auf der Inputseite (Lektorat) zu optimieren sind und gleichzeitig auf der Outputseite (Recherche) das Wissensnetz besser zu vermarkten ist: - (Teil-)Automatische Klassifizierung von Pressetexten (Vorschlagwesen) - Visualisierung des Wissensnetzes - Neue Retrievalmöglichkeiten (Ähnlichkeitssuche, Clustering) Im Bereich "Visualisierung" setzt DIZ auf den Net-Navigator von intelligent views, eine interaktive Visualisierung allgemeiner Graphen, basierend auf einem physikalischen Modell. In den Bereichen automatische Klassifizierung, Ähnlichkeitssuche und Clustering hat DIZ sich für das Produkt nextBot der Firma Brainbot entschieden.
- Source
- Spezialbibliotheken zwischen Auftrag und Ressourcen: 6.-9. September 2005 in München, 30. Arbeits- und Fortbildungstagung der ASpB e.V. / Sektion 5 im Deutschen Bibliotheksverband. Red.: M. Brauer
-
Puzicha, J.: Informationen finden! : Intelligente Suchmaschinentechnologie & automatische Kategorisierung (2007)
0.01
0.01143636 = product of:
0.04574544 = sum of:
0.04574544 = weight(_text_:und in 2817) [ClassicSimilarity], result of:
0.04574544 = score(doc=2817,freq=12.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.35989314 = fieldWeight in 2817, product of:
3.4641016 = tf(freq=12.0), with freq of:
12.0 = termFreq=12.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.046875 = fieldNorm(doc=2817)
0.25 = coord(1/4)
- Abstract
- Wie in diesem Text erläutert wurde, ist die Effektivität von Such- und Klassifizierungssystemen durch folgendes bestimmt: 1) den Arbeitsauftrag, 2) die Genauigkeit des Systems, 3) den zu erreichenden Automatisierungsgrad, 4) die Einfachheit der Integration in bereits vorhandene Systeme. Diese Kriterien gehen davon aus, dass jedes System, unabhängig von der Technologie, in der Lage ist, Grundvoraussetzungen des Produkts in Bezug auf Funktionalität, Skalierbarkeit und Input-Methode zu erfüllen. Diese Produkteigenschaften sind in der Recommind Produktliteratur genauer erläutert. Von diesen Fähigkeiten ausgehend sollte die vorhergehende Diskussion jedoch einige klare Trends aufgezeigt haben. Es ist nicht überraschend, dass jüngere Entwicklungen im Maschine Learning und anderen Bereichen der Informatik einen theoretischen Ausgangspunkt für die Entwicklung von Suchmaschinen- und Klassifizierungstechnologie haben. Besonders jüngste Fortschritte bei den statistischen Methoden (PLSA) und anderen mathematischen Werkzeugen (SVMs) haben eine Ergebnisqualität auf Durchbruchsniveau erreicht. Dazu kommt noch die Flexibilität in der Anwendung durch Selbsttraining und Kategorienerkennen von PLSA-Systemen, wie auch eine neue Generation von vorher unerreichten Produktivitätsverbesserungen.
-
Hoffmann, R.: Entwicklung einer benutzerunterstützten automatisierten Klassifikation von Web - Dokumenten : Untersuchung gegenwärtiger Methoden zur automatisierten Dokumentklassifikation und Implementierung eines Prototyps zum verbesserten Information Retrieval für das xFIND System (2002)
0.01
0.011222578 = product of:
0.04489031 = sum of:
0.04489031 = weight(_text_:und in 4197) [ClassicSimilarity], result of:
0.04489031 = score(doc=4197,freq=26.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.3531656 = fieldWeight in 4197, product of:
5.0990195 = tf(freq=26.0), with freq of:
26.0 = termFreq=26.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.03125 = fieldNorm(doc=4197)
0.25 = coord(1/4)
- Abstract
- Das unüberschaubare und permanent wachsende Angebot von Informationen im Internet ermöglicht es den Menschen nicht mehr, dieses inhaltlich zu erfassen oder gezielt nach Informationen zu suchen. Einen Lösungsweg zur verbesserten Informationsauffindung stellt hierbei die Kategorisierung bzw. Klassifikation der Informationen auf Basis ihres thematischen Inhaltes dar. Diese thematische Klassifikation kann sowohl anhand manueller (intellektueller) Methoden als auch durch automatisierte Verfahren erfolgen. Doch beide Ansätze für sich konnten die an sie gestellten Erwartungen bis zum heutigen Tag nur unzureichend erfüllen. Im Rahmen dieser Arbeit soll daher der naheliegende Ansatz, die beiden Methoden sinnvoll zu verknüpfen, untersucht werden. Im ersten Teil dieser Arbeit, dem Untersuchungsbereich, wird einleitend das Problem des Informationsüberangebots in unserer Gesellschaft erläutert und gezeigt, dass die Kategorisierung bzw. Klassifikation dieser Informationen speziell im Internet sinnvoll erscheint. Die prinzipiellen Möglichkeiten der Themenzuordnung von Dokumenten zur Verbesserung der Wissensverwaltung und Wissensauffindung werden beschrieben. Dabei werden unter anderem verschiedene Klassifikationsschemata, Topic Maps und semantische Netze vorgestellt. Schwerpunkt des Untersuchungsbereiches ist die Beschreibung automatisierter Methoden zur Themenzuordnung. Neben einem Überblick über die gebräuchlichsten Klassifikations-Algorithmen werden sowohl am Markt existierende Systeme sowie Forschungsansätze und frei verfügbare Module zur automatischen Klassifikation vorgestellt. Berücksichtigt werden auch Systeme, die zumindest teilweise den erwähnten Ansatz der Kombination von manuellen und automatischen Methoden unterstützen. Auch die in Zusammenhang mit der Klassifikation von Dokumenten im Internet auftretenden Probleme werden aufgezeigt. Die im Untersuchungsbereich gewonnenen Erkenntnisse fließen in die Entwicklung eines Moduls zur benutzerunterstützten, automatischen Dokumentklassifikation im Rahmen des xFIND Systems (extended Framework for Information Discovery) ein. Dieses an der technischen Universität Graz konzipierte Framework stellt die Basis für eine Vielzahl neuer Ideen zur Verbesserung des Information Retrieval dar. Der im Gestaltungsbereich entwickelte Lösungsansatz sieht zunächst die Verwendung bereits im System vorhandener, manuell klassifizierter Dokumente, Server oder Serverbereiche als Grundlage für die automatische Klassifikation vor. Nach erfolgter automatischer Klassifikation können in einem nächsten Schritt dann Autoren und Administratoren die Ergebnisse im Rahmen einer Benutzerunterstützung anpassen. Dabei kann das kollektive Benutzerverhalten durch die Möglichkeit eines Votings - mittels Zustimmung bzw. Ablehnung der Klassifikationsergebnisse - Einfluss finden. Das Wissen von Fachexperten und Benutzern trägt somit letztendlich zur Verbesserung der automatischen Klassifikation bei. Im Gestaltungsbereich werden die grundlegenden Konzepte, der Aufbau und die Funktionsweise des entwickelten Moduls beschrieben, sowie eine Reihe von Vorschlägen und Ideen zur Weiterentwicklung der benutzerunterstützten automatischen Dokumentklassifikation präsentiert.
- Footnote
- Diplomarbeit an der Technischen Universität Graz, Institut für Informationsverarbeitung und Computerunterstützte neue Medien (IICM)
- Imprint
- Graz : Technischen Universität, Institut für Informationsverarbeitung und Computerunterstützte neue Medien (IICM)
-
Groß, T.; Faden, M.: Automatische Indexierung elektronischer Dokumente an der Deutschen Zentralbibliothek für Wirtschaftswissenschaften : Bericht über die Jahrestagung der Internationalen Buchwissenschaftlichen Gesellschaft (2010)
0.01
0.011222578 = product of:
0.04489031 = sum of:
0.04489031 = weight(_text_:und in 4051) [ClassicSimilarity], result of:
0.04489031 = score(doc=4051,freq=26.0), product of:
0.1271084 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.057349887 = queryNorm
0.3531656 = fieldWeight in 4051, product of:
5.0990195 = tf(freq=26.0), with freq of:
26.0 = termFreq=26.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.03125 = fieldNorm(doc=4051)
0.25 = coord(1/4)
- Abstract
- Die zunehmende Verfügbarmachung digitaler Informationen in den letzten Jahren sowie die Aussicht auf ein weiteres Ansteigen der sogenannten Datenflut kumulieren in einem grundlegenden, sich weiter verstärkenden Informationsstrukturierungsproblem. Die stetige Zunahme von digitalen Informationsressourcen im World Wide Web sichert zwar jederzeit und ortsungebunden den Zugriff auf verschiedene Informationen; offen bleibt der strukturierte Zugang, insbesondere zu wissenschaftlichen Ressourcen. Angesichts der steigenden Anzahl elektronischer Inhalte und vor dem Hintergrund stagnierender bzw. knapper werdender personeller Ressourcen in der Sacherschließun schafft keine Bibliothek bzw. kein Bibliotheksverbund es mehr, weder aktuell noch zukünftig, alle digitalen Daten zu erfassen, zu strukturieren und zueinander in Beziehung zu setzen. In der Informationsgesellschaft des 21. Jahrhunderts wird es aber zunehmend wichtiger, die in der Flut verschwundenen wissenschaftlichen Informationen zeitnah, angemessen und vollständig zu strukturieren und somit als Basis für eine Wissensgenerierung wieder nutzbar zu machen. Eine normierte Inhaltserschließung digitaler Informationsressourcen ist deshalb für die Deutsche Zentralbibliothek für Wirtschaftswissenschaften (ZBW) als wichtige Informationsinfrastruktureinrichtung in diesem Bereich ein entscheidender und auch erfolgskritischer Aspekt im Wettbewerb mit anderen Informationsdienstleistern. Weil die traditionelle intellektuelle Sacherschließung aber nicht beliebig skalierbar ist - mit dem Anstieg der Zahl an Online-Dokumenten steigt proportional auch der personelle Ressourcenbedarf an Fachreferenten, wenn ein gewisser Qualitätsstandard gehalten werden soll - bedarf es zukünftig anderer Sacherschließungsverfahren. Automatisierte Verschlagwortungsmethoden werden dabei als einzige Möglichkeit angesehen, die bibliothekarische Sacherschließung auch im digitalen Zeitalter zukunftsfest auszugestalten. Zudem können maschinelle Ansätze dazu beitragen, die Heterogenitäten (Indexierungsinkonsistenzen) zwischen den einzelnen Sacherschließer zu nivellieren, und somit zu einer homogeneren Erschließung des Bibliotheksbestandes beitragen.
Mit der Anfang 2010 begonnen Implementierung und Ergebnisevaluierung des automatischen Indexierungsverfahrens "Decisiv Categorization" der Firma Recommind soll das hier skizzierte Informationsstrukturierungsproblem in zwei Schritten gelöst werden. Kurz- bis mittelfristig soll die intellektuelle Indexierung durch ein semiautomatisches Verfahren6 unterstützt werden. Mittel- bis langfristig soll das maschinelle Verfahren, aufbauend auf einem entsprechenden Training, in die Lage versetzt werden, sowohl im Hause vorliegende Dokumente vollautomatisch zu indexieren als auch ZBW-fremde digitale Informationsressourcen zu verschlagworten bzw. zu klassifizieren, um sie in einem gemeinsamen Suchraum auffindbar machen zu können. Im Anschluss an diese Einleitung werden die ersten Ansätze maschineller Sacherschließung an der ZBW (2001-2004) und deren Ergebnisse und Problemlagen aufgezeigt. Danach werden die Rahmenbedingungen (Projektauftrag und -ziel) für eine Wiederaufnahme des Vorhabens im Jahre 2009 aufgezeigt, gefolgt von einer Darstellung der Funktionsweise der Recommind-Technologie und deren Einsatz im Rahmen der Sacherschließung von Online-Dokumenten mit einem Thesaurus. Schwerpunkt dieser Abhandlung bilden im Anschluss daran die Evaluierungsmöglichkeiten automatischer Indexierungsansätze sowie die aktuellen Ergebnisse und zentralen Erkenntnisse des Einsatzes im Kontext der ZBW. Das Fazit beschreibt die entsprechenden Schlussfolgerungen aus den erzielten Ergebnissen sowie den Ausblick auf das weitere Vorgehen.