Search (3 results, page 1 of 1)

  • × author_ss:"Witschel, H.F."
  1. Witschel, H.F.: Terminologie-Extraktion : Möglichkeiten der Kombination statistischer uns musterbasierter Verfahren (2004) 0.01
    0.007241605 = product of:
      0.02896642 = sum of:
        0.02896642 = weight(_text_:und in 123) [ClassicSimilarity], result of:
          0.02896642 = score(doc=123,freq=8.0), product of:
            0.118290015 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.05337113 = queryNorm
            0.24487628 = fieldWeight in 123, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=123)
      0.25 = coord(1/4)
    
    Abstract
    Die Suche nach Informationen in unstrukturierten natürlichsprachlichen Daten ist Gegenstand des sogenannten Text Mining. In dieser Arbeit wird ein Teilgebiet des Text Mining beleuchtet, nämlich die Extraktion domänenspezifischer Fachbegriffe aus Fachtexten der jeweiligen Domäne. Wofür überhaupt Terminologie-Extraktion? Die Antwort darauf ist einfach: der Schlüssel zum Verständnis vieler Fachgebiete liegt in der Kenntnis der zugehörigen Terminologie. Natürlich genügt es nicht, nur eine Liste der Fachtermini einer Domäne zu kennen, um diese zu durchdringen. Eine solche Liste ist aber eine wichtige Voraussetzung für die Erstellung von Fachwörterbüchern (man denke z.B. an Nachschlagewerke wie das klinische Wörterbuch "Pschyrembel"): zunächst muß geklärt werden, welche Begriffe in das Wörterbuch aufgenommen werden sollen, bevor man sich Gedanken um die genaue Definition der einzelnen Termini machen kann. Ein Fachwörterbuch sollte genau diejenigen Begriffe einer Domäne beinhalten, welche Gegenstand der Forschung in diesem Gebiet sind oder waren. Was liegt also näher, als entsprechende Fachliteratur zu betrachten und das darin enthaltene Wissen in Form von Fachtermini zu extrahieren? Darüberhinaus sind weitere Anwendungen der Terminologie-Extraktion denkbar, wie z.B. die automatische Beschlagwortung von Texten oder die Erstellung sogenannter Topic Maps, welche wichtige Begriffe zu einem Thema darstellt und in Beziehung setzt. Es muß also zunächst die Frage geklärt werden, was Terminologie eigentlich ist, vor allem aber werden verschiedene Methoden entwickelt, welche die Eigenschaften von Fachtermini ausnutzen, um diese aufzufinden. Die Verfahren werden aus den linguistischen und 'statistischen' Charakteristika von Fachbegriffen hergeleitet und auf geeignete Weise kombiniert.
  2. Witschel, H.F.: Text, Wörter, Morpheme : Möglichkeiten einer automatischen Terminologie-Extraktion (2004) 0.01
    0.007241605 = product of:
      0.02896642 = sum of:
        0.02896642 = weight(_text_:und in 126) [ClassicSimilarity], result of:
          0.02896642 = score(doc=126,freq=8.0), product of:
            0.118290015 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.05337113 = queryNorm
            0.24487628 = fieldWeight in 126, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=126)
      0.25 = coord(1/4)
    
    Abstract
    Die vorliegende Arbeit beschäftigt sich mit einem Teilgebiet des TextMining, versucht also Information (in diesem Fall Fachterminologie) aus natürlichsprachlichem Text zu extrahieren. Die der Arbeit zugrundeliegende These besagt, daß in vielen Gebieten des Text Mining die Kombination verschiedener Methoden sinnvoll sein kann, um dem Facettenreichtum natürlicher Sprache gerecht zu werden. Die bei der Terminologie-Extraktion angewandten Methoden sind statistischer und linguistischer (bzw. musterbasierter) Natur. Um sie herzuleiten, wurden einige Eigenschaften von Fachtermini herausgearbeitet, die für deren Extraktion relevant sind. So läßt sich z.B. die Tatsache, daß viele Fachbegriffe Nominalphrasen einer bestimmten Form sind, direkt für eine Suche nach gewissen POS-Mustern ausnützen, die Verteilung von Termen in Fachtexten führte zu einem statistischen Ansatz - der Differenzanalyse. Zusammen mit einigen weiteren wurden diese Ansätze in ein Verfahren integriert, welches in der Lage ist, aus dem Feedback eines Anwenders zu lernen und in mehreren Schritten die Suche nach Terminologie zu verfeinern. Dabei wurden mehrere Parameter des Verfahrens veränderlich belassen, d.h. der Anwender kann sie beliebig anpassen. Bei der Untersuchung der Ergebnisse anhand von zwei Fachtexten aus unterschiedlichen Domänen wurde deutlich, daß sich zwar die verschiedenen Verfahren gut ergänzen, daß aber die optimalen Werte der veränderbaren Parameter, ja selbst die Auswahl der angewendeten Verfahren text- und domänenabhängig sind.
    Imprint
    Leipzig : Universität / Fakultät für Mathematik und Informatik Institut für Informatik
  3. Witschel, H.F.: Global and local resources for peer-to-peer text retrieval (2008) 0.00
    0.0025345616 = product of:
      0.010138246 = sum of:
        0.010138246 = weight(_text_:und in 127) [ClassicSimilarity], result of:
          0.010138246 = score(doc=127,freq=2.0), product of:
            0.118290015 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.05337113 = queryNorm
            0.085706696 = fieldWeight in 127, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.02734375 = fieldNorm(doc=127)
      0.25 = coord(1/4)
    
    Imprint
    Leipzig : Universität / Fakultät für Mathematik und Informatik Institut für Informatik