Search (2 results, page 1 of 1)

  • × author_ss:"Rapke, K."
  1. Rapke, K.: Automatische Indexierung von Volltexten für die Gruner+Jahr Pressedatenbank (2001) 0.01
    0.009793494 = product of:
      0.039173976 = sum of:
        0.039173976 = weight(_text_:und in 5863) [ClassicSimilarity], result of:
          0.039173976 = score(doc=5863,freq=16.0), product of:
            0.1131191 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.051038075 = queryNorm
            0.34630734 = fieldWeight in 5863, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5863)
      0.25 = coord(1/4)
    
    Abstract
    Retrievaltests sind die anerkannteste Methode, um neue Verfahren der Inhaltserschließung gegenüber traditionellen Verfahren zu rechtfertigen. Im Rahmen einer Diplomarbeit wurden zwei grundsätzlich unterschiedliche Systeme der automatischen inhaltlichen Erschließung anhand der Pressedatenbank des Verlagshauses Gruner + Jahr (G+J) getestet und evaluiert. Untersucht wurde dabei natürlichsprachliches Retrieval im Vergleich zu Booleschem Retrieval. Bei den beiden Systemen handelt es sich zum einen um Autonomy von Autonomy Inc. und DocCat, das von IBM an die Datenbankstruktur der G+J Pressedatenbank angepasst wurde. Ersteres ist ein auf natürlichsprachlichem Retrieval basierendes, probabilistisches System. DocCat demgegenüber basiert auf Booleschem Retrieval und ist ein lernendes System, das aufgrund einer intellektuell erstellten Trainingsvorlage indexiert. Methodisch geht die Evaluation vom realen Anwendungskontext der Textdokumentation von G+J aus. Die Tests werden sowohl unter statistischen wie auch qualitativen Gesichtspunkten bewertet. Ein Ergebnis der Tests ist, dass DocCat einige Mängel gegenüber der intellektuellen Inhaltserschließung aufweist, die noch behoben werden müssen, während das natürlichsprachliche Retrieval von Autonomy in diesem Rahmen und für die speziellen Anforderungen der G+J Textdokumentation so nicht einsetzbar ist
    Series
    Tagungen der Deutschen Gesellschaft für Informationswissenschaft und Informationspraxis; 4
    Source
    Information Research & Content Management: Orientierung, Ordnung und Organisation im Wissensmarkt; 23. DGI-Online-Tagung der DGI und 53. Jahrestagung der Deutschen Gesellschaft für Informationswissenschaft und Informationspraxis e.V. DGI, Frankfurt am Main, 8.-10.5.2001. Proceedings. Hrsg.: R. Schmidt
  2. Rapke, K.: Automatische Indexierung von Volltexten für die Gruner+Jahr Pressedatenbank (2001) 0.01
    0.009290924 = product of:
      0.037163697 = sum of:
        0.037163697 = weight(_text_:und in 6386) [ClassicSimilarity], result of:
          0.037163697 = score(doc=6386,freq=10.0), product of:
            0.1131191 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.051038075 = queryNorm
            0.328536 = fieldWeight in 6386, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.046875 = fieldNorm(doc=6386)
      0.25 = coord(1/4)
    
    Abstract
    Retrieval Tests sind die anerkannteste Methode, um neue Verfahren der Inhaltserschließung gegenüber traditionellen Verfahren zu rechtfertigen. Im Rahmen einer Diplomarbeit wurden zwei grundsätzlich unterschiedliche Systeme der automatischen inhaltlichen Erschließung anhand der Pressedatenbank des Verlagshauses Gruner + Jahr (G+J) getestet und evaluiert. Untersucht wurde dabei natürlichsprachliches Retrieval im Vergleich zu Booleschem Retrieval. Bei den beiden Systemen handelt es sich zum einen um Autonomy von Autonomy Inc. und DocCat, das von IBM an die Datenbankstruktur der G+J Pressedatenbank angepasst wurde. Ersteres ist ein auf natürlichsprachlichem Retrieval basierendes, probabilistisches System. DocCat demgegenüber basiert auf Booleschem Retrieval und ist ein lernendes System, das auf Grund einer intellektuell erstellten Trainingsvorlage indexiert. Methodisch geht die Evaluation vom realen Anwendungskontext der Textdokumentation von G+J aus. Die Tests werden sowohl unter statistischen wie auch qualitativen Gesichtspunkten bewertet. Ein Ergebnis der Tests ist, dass DocCat einige Mängel gegenüber der intellektuellen Inhaltserschließung aufweist, die noch behoben werden müssen, während das natürlichsprachliche Retrieval von Autonomy in diesem Rahmen und für die speziellen Anforderungen der G+J Textdokumentation so nicht einsetzbar ist
    Source
    nfd Information - Wissenschaft und Praxis. 52(2001) H.5, S.251-262