Search (2 results, page 1 of 1)

  • × author_ss:"Lopez, P."
  1. Lopez, P.: ChatGPT und der Unterschied zwischen Form und Inhalt (2023) 0.01
    0.014411461 = product of:
      0.057645842 = sum of:
        0.057645842 = weight(_text_:und in 1027) [ClassicSimilarity], result of:
          0.057645842 = score(doc=1027,freq=14.0), product of:
            0.1271084 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.057349887 = queryNorm
            0.4535172 = fieldWeight in 1027, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1027)
      0.25 = coord(1/4)
    
    Abstract
    Seit seiner Präsentation bekommt ChatGPT viel Aufmerksamkeit. Einige argumentieren, das Erstellen von Text werde positiv revolutioniert - andere fürchten eine Erosion verschiedenster textbasierter Institutionen wie etwa Zeitungen oder Beurteilungsmodi von Bildungsinstitutionen. Die meisten sind sich jedenfalls einig: ChatGPT und ähnliche Sprachmodelle sind, weil besonders gut, etwas Großes. Gleichzeitig schwirren Beispiele durch das Internet, die zeigen, wie schlecht, falsch und unsinnig ein von ChatGPT produzierter Text sein kann. Diese Beurteilungsskala ist jedoch eindimensional - die Frage, »wie gut« ChatGPT funktioniert, geht an wesentlichen Punkten vorbei. Wie etwa: Was bedeutet »gut« in diesem Kontext? Was folgt daraus, dass ChatGPT »gut« ist? Und die wichtigste Frage: Was wollen wir eigentlich von Texten?
    Source
    Merkur. Heft 891, August 2023, S.55-64 [https://www.merkur-zeitschrift.de/artikel/chatgpt-und-der-unterschied-zwischen-form-und-inhalt-a-mr-77-8-15/]
  2. Lopez, P.: Artificial Intelligence und die normative Kraft des Faktischen (2021) 0.01
    0.012450332 = product of:
      0.049801327 = sum of:
        0.049801327 = weight(_text_:und in 1025) [ClassicSimilarity], result of:
          0.049801327 = score(doc=1025,freq=8.0), product of:
            0.1271084 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.057349887 = queryNorm
            0.39180204 = fieldWeight in 1025, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0625 = fieldNorm(doc=1025)
      0.25 = coord(1/4)
    
    Abstract
    Den Gesundheitszustand von Patienten zu prognostizieren, um medizinische Präventionsmaßnahmen möglichst sinnvoll zu verteilen, ist schwieriger, als man denkt. Dabei scheint die Problemstellung denkbar simpel: Es sollen diejenigen Patientinnen zusätzliche Präventionsmaßnahmen erhalten, deren Gesundheitszustand sich zu verschlechtern droht. Doch der Gesundheitszustand ist, wie die meisten menschlichen Angelegenheiten, zu komplex, um ihn einheitlich messen und quantifizieren zu können. Das gilt auch dann, wenn alle Patientendaten vollständig zur Verfügung stehen und mit Big-Data-Methoden verarbeitet werden können.
    Source
    Merkur. Heft 863, April 20213, S.42-52 [https://www.merkur-zeitschrift.de/artikel/artificial-intelligence-und-die-normative-kraft-des-faktischen-a-mr-75-4-42]