Search (1 results, page 1 of 1)

  • × author_ss:"Giesselbach, S."
  1. Giesselbach, S.; Estler-Ziegler, T.: Dokumente schneller analysieren mit Künstlicher Intelligenz (2021) 0.01
    0.011994532 = product of:
      0.04797813 = sum of:
        0.04797813 = weight(_text_:und in 128) [ClassicSimilarity], result of:
          0.04797813 = score(doc=128,freq=24.0), product of:
            0.1131191 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.051038075 = queryNorm
            0.42413816 = fieldWeight in 128, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=128)
      0.25 = coord(1/4)
    
    Abstract
    Künstliche Intelligenz (KI) und natürliches Sprachverstehen (natural language understanding/NLU) verändern viele Aspekte unseres Alltags und unserer Arbeitsweise. Besondere Prominenz erlangte NLU durch Sprachassistenten wie Siri, Alexa und Google Now. NLU bietet Firmen und Einrichtungen das Potential, Prozesse effizienter zu gestalten und Mehrwert aus textuellen Inhalten zu schöpfen. So sind NLU-Lösungen in der Lage, komplexe, unstrukturierte Dokumente inhaltlich zu erschließen. Für die semantische Textanalyse hat das NLU-Team des IAIS Sprachmodelle entwickelt, die mit Deep-Learning-Verfahren trainiert werden. Die NLU-Suite analysiert Dokumente, extrahiert Eckdaten und erstellt bei Bedarf sogar eine strukturierte Zusammenfassung. Mit diesen Ergebnissen, aber auch über den Inhalt der Dokumente selbst, lassen sich Dokumente vergleichen oder Texte mit ähnlichen Informationen finden. KI-basierten Sprachmodelle sind der klassischen Verschlagwortung deutlich überlegen. Denn sie finden nicht nur Texte mit vordefinierten Schlagwörtern, sondern suchen intelligent nach Begriffen, die in ähnlichem Zusammenhang auftauchen oder als Synonym gebraucht werden. Der Vortrag liefert eine Einordnung der Begriffe "Künstliche Intelligenz" und "Natural Language Understanding" und zeigt Möglichkeiten, Grenzen, aktuelle Forschungsrichtungen und Methoden auf. Anhand von Praxisbeispielen wird anschließend demonstriert, wie NLU zur automatisierten Belegverarbeitung, zur Katalogisierung von großen Datenbeständen wie Nachrichten und Patenten und zur automatisierten thematischen Gruppierung von Social Media Beiträgen und Publikationen genutzt werden kann.