Mandl, T.; Diem, S.: Bild- und Video-Retrieval (2023)
0.01
0.010864821 = product of:
0.043459285 = sum of:
0.043459285 = weight(_text_:und in 801) [ClassicSimilarity], result of:
0.043459285 = score(doc=801,freq=12.0), product of:
0.12075608 = queryWeight, product of:
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.054483794 = queryNorm
0.35989314 = fieldWeight in 801, product of:
3.4641016 = tf(freq=12.0), with freq of:
12.0 = termFreq=12.0
2.216367 = idf(docFreq=13101, maxDocs=44218)
0.046875 = fieldNorm(doc=801)
0.25 = coord(1/4)
- Abstract
- Digitale Bildverarbeitung hat längst den Alltag erreicht: Automatisierte Passkontrollen, Gesichtserkennung auf dem Mobiltelefon und Apps zum Bestimmen von Pflanzen anhand von Fotos sind nur einige Beispiele für den Einsatz dieser Technologie. Digitale Bildverarbeitung zur Analyse der Inhalte von Bildern kann den Zugang zu Wissen verbessern und ist somit relevant für die Informationswissenschaft. Häufig greifen Systeme bei der Suche nach visueller Information nach wie vor auf beschreibende Metadaten zu, weil diese sprachbasierten Methoden für Massendaten meist robust funktionieren. Der Fokus liegt in diesem Beitrag auf automatischer Inhaltsanalyse von Bildern (content based image retrieval) und nicht auf reinen Metadaten-Systemen, welche Wörter für die Beschreibung von Bildern nutzen (s. Kapitel B 9 Metadaten) und somit letztlich Text-Retrieval ausführen (concept based image retrieval) (s. Kapitel C 1 Informationswissenschaftliche Perspektiven des Information Retrieval).
- Source
- Grundlagen der Informationswissenschaft. Hrsg.: Rainer Kuhlen, Dirk Lewandowski, Wolfgang Semar und Christa Womser-Hacker. 7., völlig neu gefasste Ausg