-
Sun, J.; Zhu, M.; Jiang, Y.; Liu, Y.; Wu, L.L.: Hierarchical attention model for personalized tag recommendation : peer effects on information value perception (2021)
0.22
0.21945839 = sum of:
0.21945839 = product of:
0.6096066 = sum of:
0.024867292 = weight(abstract_txt:features in 1099) [ClassicSimilarity], result of:
0.024867292 = score(doc=1099,freq=1.0), product of:
0.08762603 = queryWeight, product of:
1.1186624 = boost
4.5406218 = idf(docFreq=1287, maxDocs=44421)
0.01725118 = queryNorm
0.28378886 = fieldWeight in 1099, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
4.5406218 = idf(docFreq=1287, maxDocs=44421)
0.0625 = fieldNorm(doc=1099)
0.026190305 = weight(abstract_txt:performance in 1099) [ClassicSimilarity], result of:
0.026190305 = score(doc=1099,freq=1.0), product of:
0.090707086 = queryWeight, product of:
1.1381593 = boost
4.619759 = idf(docFreq=1189, maxDocs=44421)
0.01725118 = queryNorm
0.28873494 = fieldWeight in 1099, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
4.619759 = idf(docFreq=1189, maxDocs=44421)
0.0625 = fieldNorm(doc=1099)
0.02658257 = weight(abstract_txt:existing in 1099) [ClassicSimilarity], result of:
0.02658257 = score(doc=1099,freq=1.0), product of:
0.09161054 = queryWeight, product of:
1.1438134 = boost
4.6427093 = idf(docFreq=1162, maxDocs=44421)
0.01725118 = queryNorm
0.29016933 = fieldWeight in 1099, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
4.6427093 = idf(docFreq=1162, maxDocs=44421)
0.0625 = fieldNorm(doc=1099)
0.036970492 = weight(abstract_txt:sets in 1099) [ClassicSimilarity], result of:
0.036970492 = score(doc=1099,freq=1.0), product of:
0.114143446 = queryWeight, product of:
1.276756 = boost
5.18232 = idf(docFreq=677, maxDocs=44421)
0.01725118 = queryNorm
0.323895 = fieldWeight in 1099, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
5.18232 = idf(docFreq=677, maxDocs=44421)
0.0625 = fieldNorm(doc=1099)
0.057120148 = weight(abstract_txt:extensive in 1099) [ClassicSimilarity], result of:
0.057120148 = score(doc=1099,freq=1.0), product of:
0.15254818 = queryWeight, product of:
1.4759986 = boost
5.9910407 = idf(docFreq=301, maxDocs=44421)
0.01725118 = queryNorm
0.37444004 = fieldWeight in 1099, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
5.9910407 = idf(docFreq=301, maxDocs=44421)
0.0625 = fieldNorm(doc=1099)
0.08843606 = weight(abstract_txt:neural in 1099) [ClassicSimilarity], result of:
0.08843606 = score(doc=1099,freq=1.0), product of:
0.20415832 = queryWeight, product of:
1.7075207 = boost
6.930783 = idf(docFreq=117, maxDocs=44421)
0.01725118 = queryNorm
0.43317392 = fieldWeight in 1099, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
6.930783 = idf(docFreq=117, maxDocs=44421)
0.0625 = fieldNorm(doc=1099)
0.105047904 = weight(abstract_txt:network in 1099) [ClassicSimilarity], result of:
0.105047904 = score(doc=1099,freq=4.0), product of:
0.18174498 = queryWeight, product of:
2.278393 = boost
4.6239696 = idf(docFreq=1184, maxDocs=44421)
0.01725118 = queryNorm
0.5779962 = fieldWeight in 1099, product of:
2.0 = tf(freq=4.0), with freq of:
4.0 = termFreq=4.0
4.6239696 = idf(docFreq=1184, maxDocs=44421)
0.0625 = fieldNorm(doc=1099)
0.092799306 = weight(abstract_txt:models in 1099) [ClassicSimilarity], result of:
0.092799306 = score(doc=1099,freq=2.0), product of:
0.22709836 = queryWeight, product of:
2.847472 = boost
4.623126 = idf(docFreq=1185, maxDocs=44421)
0.01725118 = queryNorm
0.40863046 = fieldWeight in 1099, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
4.623126 = idf(docFreq=1185, maxDocs=44421)
0.0625 = fieldNorm(doc=1099)
0.15159255 = weight(abstract_txt:deep in 1099) [ClassicSimilarity], result of:
0.15159255 = score(doc=1099,freq=1.0), product of:
0.36841962 = queryWeight, product of:
3.24391 = boost
6.5834737 = idf(docFreq=166, maxDocs=44421)
0.01725118 = queryNorm
0.4114671 = fieldWeight in 1099, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
6.5834737 = idf(docFreq=166, maxDocs=44421)
0.0625 = fieldNorm(doc=1099)
0.36 = coord(9/25)
-
Huang, H.-H.; Wang, J.-J.; Chen, H.-H.: Implicit opinion analysis : extraction and polarity labelling (2017)
0.21
0.21150905 = sum of:
0.21150905 = product of:
0.8812877 = sum of:
0.15194485 = weight(abstract_txt:convolutional in 4820) [ClassicSimilarity], result of:
0.15194485 = score(doc=4820,freq=1.0), product of:
0.17739198 = queryWeight, product of:
1.1254714 = boost
9.1365185 = idf(docFreq=12, maxDocs=44421)
0.01725118 = queryNorm
0.8565486 = fieldWeight in 4820, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
9.1365185 = idf(docFreq=12, maxDocs=44421)
0.09375 = fieldNorm(doc=4820)
0.18760122 = weight(abstract_txt:neural in 4820) [ClassicSimilarity], result of:
0.18760122 = score(doc=4820,freq=2.0), product of:
0.20415832 = queryWeight, product of:
1.7075207 = boost
6.930783 = idf(docFreq=117, maxDocs=44421)
0.01725118 = queryNorm
0.91890067 = fieldWeight in 4820, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
6.930783 = idf(docFreq=117, maxDocs=44421)
0.09375 = fieldNorm(doc=4820)
0.063733645 = weight(abstract_txt:learning in 4820) [ClassicSimilarity], result of:
0.063733645 = score(doc=4820,freq=1.0), product of:
0.14336053 = queryWeight, product of:
1.7524388 = boost
4.7420692 = idf(docFreq=1052, maxDocs=44421)
0.01725118 = queryNorm
0.444569 = fieldWeight in 4820, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
4.7420692 = idf(docFreq=1052, maxDocs=44421)
0.09375 = fieldNorm(doc=4820)
0.11142013 = weight(abstract_txt:network in 4820) [ClassicSimilarity], result of:
0.11142013 = score(doc=4820,freq=2.0), product of:
0.18174498 = queryWeight, product of:
2.278393 = boost
4.6239696 = idf(docFreq=1184, maxDocs=44421)
0.01725118 = queryNorm
0.61305755 = fieldWeight in 4820, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
4.6239696 = idf(docFreq=1184, maxDocs=44421)
0.09375 = fieldNorm(doc=4820)
0.13919896 = weight(abstract_txt:models in 4820) [ClassicSimilarity], result of:
0.13919896 = score(doc=4820,freq=2.0), product of:
0.22709836 = queryWeight, product of:
2.847472 = boost
4.623126 = idf(docFreq=1185, maxDocs=44421)
0.01725118 = queryNorm
0.6129457 = fieldWeight in 4820, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
4.623126 = idf(docFreq=1185, maxDocs=44421)
0.09375 = fieldNorm(doc=4820)
0.22738883 = weight(abstract_txt:deep in 4820) [ClassicSimilarity], result of:
0.22738883 = score(doc=4820,freq=1.0), product of:
0.36841962 = queryWeight, product of:
3.24391 = boost
6.5834737 = idf(docFreq=166, maxDocs=44421)
0.01725118 = queryNorm
0.6172007 = fieldWeight in 4820, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
6.5834737 = idf(docFreq=166, maxDocs=44421)
0.09375 = fieldNorm(doc=4820)
0.24 = coord(6/25)
-
Zou, J.; Thoma, G.; Antani, S.: Unified deep neural network for segmentation and labeling of multipanel biomedical figures (2020)
0.21
0.20863172 = sum of:
0.20863172 = product of:
0.65197414 = sum of:
0.03516766 = weight(abstract_txt:features in 1011) [ClassicSimilarity], result of:
0.03516766 = score(doc=1011,freq=2.0), product of:
0.08762603 = queryWeight, product of:
1.1186624 = boost
4.5406218 = idf(docFreq=1287, maxDocs=44421)
0.01725118 = queryNorm
0.40133804 = fieldWeight in 1011, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
4.5406218 = idf(docFreq=1287, maxDocs=44421)
0.0625 = fieldNorm(doc=1011)
0.10129657 = weight(abstract_txt:convolutional in 1011) [ClassicSimilarity], result of:
0.10129657 = score(doc=1011,freq=1.0), product of:
0.17739198 = queryWeight, product of:
1.1254714 = boost
9.1365185 = idf(docFreq=12, maxDocs=44421)
0.01725118 = queryNorm
0.5710324 = fieldWeight in 1011, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
9.1365185 = idf(docFreq=12, maxDocs=44421)
0.0625 = fieldNorm(doc=1011)
0.026190305 = weight(abstract_txt:performance in 1011) [ClassicSimilarity], result of:
0.026190305 = score(doc=1011,freq=1.0), product of:
0.090707086 = queryWeight, product of:
1.1381593 = boost
4.619759 = idf(docFreq=1189, maxDocs=44421)
0.01725118 = queryNorm
0.28873494 = fieldWeight in 1011, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
4.619759 = idf(docFreq=1189, maxDocs=44421)
0.0625 = fieldNorm(doc=1011)
0.12506747 = weight(abstract_txt:neural in 1011) [ClassicSimilarity], result of:
0.12506747 = score(doc=1011,freq=2.0), product of:
0.20415832 = queryWeight, product of:
1.7075207 = boost
6.930783 = idf(docFreq=117, maxDocs=44421)
0.01725118 = queryNorm
0.61260045 = fieldWeight in 1011, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
6.930783 = idf(docFreq=117, maxDocs=44421)
0.0625 = fieldNorm(doc=1011)
0.029136706 = weight(abstract_txt:article in 1011) [ClassicSimilarity], result of:
0.029136706 = score(doc=1011,freq=1.0), product of:
0.12270185 = queryWeight, product of:
1.872074 = boost
3.79935 = idf(docFreq=2702, maxDocs=44421)
0.01725118 = queryNorm
0.23745938 = fieldWeight in 1011, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
3.79935 = idf(docFreq=2702, maxDocs=44421)
0.0625 = fieldNorm(doc=1011)
0.07428008 = weight(abstract_txt:network in 1011) [ClassicSimilarity], result of:
0.07428008 = score(doc=1011,freq=2.0), product of:
0.18174498 = queryWeight, product of:
2.278393 = boost
4.6239696 = idf(docFreq=1184, maxDocs=44421)
0.01725118 = queryNorm
0.40870503 = fieldWeight in 1011, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
4.6239696 = idf(docFreq=1184, maxDocs=44421)
0.0625 = fieldNorm(doc=1011)
0.109242804 = weight(abstract_txt:feature in 1011) [ClassicSimilarity], result of:
0.109242804 = score(doc=1011,freq=1.0), product of:
0.29613248 = queryWeight, product of:
2.9083085 = boost
5.9023747 = idf(docFreq=329, maxDocs=44421)
0.01725118 = queryNorm
0.36889842 = fieldWeight in 1011, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
5.9023747 = idf(docFreq=329, maxDocs=44421)
0.0625 = fieldNorm(doc=1011)
0.15159255 = weight(abstract_txt:deep in 1011) [ClassicSimilarity], result of:
0.15159255 = score(doc=1011,freq=1.0), product of:
0.36841962 = queryWeight, product of:
3.24391 = boost
6.5834737 = idf(docFreq=166, maxDocs=44421)
0.01725118 = queryNorm
0.4114671 = fieldWeight in 1011, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
6.5834737 = idf(docFreq=166, maxDocs=44421)
0.0625 = fieldNorm(doc=1011)
0.32 = coord(8/25)
-
Jiang, Y.; Zhang, X.; Tang, Y.; Nie, R.: Feature-based approaches to semantic similarity assessment of concepts using Wikipedia (2015)
0.21
0.20787634 = sum of:
0.20787634 = product of:
0.86615145 = sum of:
0.035258118 = weight(abstract_txt:framework in 3682) [ClassicSimilarity], result of:
0.035258118 = score(doc=3682,freq=2.0), product of:
0.08777623 = queryWeight, product of:
1.1196207 = boost
4.5445113 = idf(docFreq=1282, maxDocs=44421)
0.01725118 = queryNorm
0.40168184 = fieldWeight in 3682, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
4.5445113 = idf(docFreq=1282, maxDocs=44421)
0.0625 = fieldNorm(doc=3682)
0.02658257 = weight(abstract_txt:existing in 3682) [ClassicSimilarity], result of:
0.02658257 = score(doc=3682,freq=1.0), product of:
0.09161054 = queryWeight, product of:
1.1438134 = boost
4.6427093 = idf(docFreq=1162, maxDocs=44421)
0.01725118 = queryNorm
0.29016933 = fieldWeight in 3682, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
4.6427093 = idf(docFreq=1162, maxDocs=44421)
0.0625 = fieldNorm(doc=3682)
0.05565624 = weight(abstract_txt:assess in 3682) [ClassicSimilarity], result of:
0.05565624 = score(doc=3682,freq=1.0), product of:
0.14993052 = queryWeight, product of:
1.4632801 = boost
5.9394164 = idf(docFreq=317, maxDocs=44421)
0.01725118 = queryNorm
0.37121353 = fieldWeight in 3682, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
5.9394164 = idf(docFreq=317, maxDocs=44421)
0.0625 = fieldNorm(doc=3682)
0.052523952 = weight(abstract_txt:network in 3682) [ClassicSimilarity], result of:
0.052523952 = score(doc=3682,freq=1.0), product of:
0.18174498 = queryWeight, product of:
2.278393 = boost
4.6239696 = idf(docFreq=1184, maxDocs=44421)
0.01725118 = queryNorm
0.2889981 = fieldWeight in 3682, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
4.6239696 = idf(docFreq=1184, maxDocs=44421)
0.0625 = fieldNorm(doc=3682)
0.21848561 = weight(abstract_txt:feature in 3682) [ClassicSimilarity], result of:
0.21848561 = score(doc=3682,freq=4.0), product of:
0.29613248 = queryWeight, product of:
2.9083085 = boost
5.9023747 = idf(docFreq=329, maxDocs=44421)
0.01725118 = queryNorm
0.73779684 = fieldWeight in 3682, product of:
2.0 = tf(freq=4.0), with freq of:
4.0 = termFreq=4.0
5.9023747 = idf(docFreq=329, maxDocs=44421)
0.0625 = fieldNorm(doc=3682)
0.47764495 = weight(abstract_txt:wikipedia in 3682) [ClassicSimilarity], result of:
0.47764495 = score(doc=3682,freq=6.0), product of:
0.49881667 = queryWeight, product of:
4.62289 = boost
6.25473 = idf(docFreq=231, maxDocs=44421)
0.01725118 = queryNorm
0.9575561 = fieldWeight in 3682, product of:
2.4494898 = tf(freq=6.0), with freq of:
6.0 = termFreq=6.0
6.25473 = idf(docFreq=231, maxDocs=44421)
0.0625 = fieldNorm(doc=3682)
0.24 = coord(6/25)
-
Mao, J.; Xu, W.; Yang, Y.; Wang, J.; Yuille, A.L.: Explain images with multimodal recurrent neural networks (2014)
0.19
0.18705952 = sum of:
0.18705952 = product of:
0.7794147 = sum of:
0.12662071 = weight(abstract_txt:convolutional in 2557) [ClassicSimilarity], result of:
0.12662071 = score(doc=2557,freq=1.0), product of:
0.17739198 = queryWeight, product of:
1.1254714 = boost
9.1365185 = idf(docFreq=12, maxDocs=44421)
0.01725118 = queryNorm
0.71379054 = fieldWeight in 2557, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
9.1365185 = idf(docFreq=12, maxDocs=44421)
0.078125 = fieldNorm(doc=2557)
0.03273788 = weight(abstract_txt:performance in 2557) [ClassicSimilarity], result of:
0.03273788 = score(doc=2557,freq=1.0), product of:
0.090707086 = queryWeight, product of:
1.1381593 = boost
4.619759 = idf(docFreq=1189, maxDocs=44421)
0.01725118 = queryNorm
0.36091867 = fieldWeight in 2557, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
4.619759 = idf(docFreq=1189, maxDocs=44421)
0.078125 = fieldNorm(doc=2557)
0.15633434 = weight(abstract_txt:neural in 2557) [ClassicSimilarity], result of:
0.15633434 = score(doc=2557,freq=2.0), product of:
0.20415832 = queryWeight, product of:
1.7075207 = boost
6.930783 = idf(docFreq=117, maxDocs=44421)
0.01725118 = queryNorm
0.7657505 = fieldWeight in 2557, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
6.930783 = idf(docFreq=117, maxDocs=44421)
0.078125 = fieldNorm(doc=2557)
0.11371769 = weight(abstract_txt:network in 2557) [ClassicSimilarity], result of:
0.11371769 = score(doc=2557,freq=3.0), product of:
0.18174498 = queryWeight, product of:
2.278393 = boost
4.6239696 = idf(docFreq=1184, maxDocs=44421)
0.01725118 = queryNorm
0.6256992 = fieldWeight in 2557, product of:
1.7320508 = tf(freq=3.0), with freq of:
3.0 = termFreq=3.0
4.6239696 = idf(docFreq=1184, maxDocs=44421)
0.078125 = fieldNorm(doc=2557)
0.08202378 = weight(abstract_txt:models in 2557) [ClassicSimilarity], result of:
0.08202378 = score(doc=2557,freq=1.0), product of:
0.22709836 = queryWeight, product of:
2.847472 = boost
4.623126 = idf(docFreq=1185, maxDocs=44421)
0.01725118 = queryNorm
0.36118174 = fieldWeight in 2557, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
4.623126 = idf(docFreq=1185, maxDocs=44421)
0.078125 = fieldNorm(doc=2557)
0.26798028 = weight(abstract_txt:deep in 2557) [ClassicSimilarity], result of:
0.26798028 = score(doc=2557,freq=2.0), product of:
0.36841962 = queryWeight, product of:
3.24391 = boost
6.5834737 = idf(docFreq=166, maxDocs=44421)
0.01725118 = queryNorm
0.7273779 = fieldWeight in 2557, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
6.5834737 = idf(docFreq=166, maxDocs=44421)
0.078125 = fieldNorm(doc=2557)
0.24 = coord(6/25)